【題目】已知橢圓M:: (a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B.經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(1)求橢圓方程;
(2)當直線l的傾斜角為45°時,求線段CD的長;
(3)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.

【答案】
(1)解:因為F(﹣1,0)為橢圓的焦點,所以c=1,又b2=3,

所以a2=4,所以橢圓方程為 =1;


(2)解:因為直線的傾斜角為45°,所以直線的斜率為1,

所以直線方程為y=x+1,和橢圓方程聯(lián)立得到

,消掉y,得到7x2+8x﹣8=0,

所以△=288,x1+x2= ,x1x2=﹣

所以|CD|= |x1﹣x2|= × = ;


(3)解:當直線l無斜率時,直線方程為x=﹣1,

此時D(﹣1, ),C(﹣1,﹣ ),△ABD,△ABC面積相等,|S1﹣S2|=0,

當直線l斜率存在(顯然k≠0)時,設直線方程為y=k(x+1)(k≠0),

設C(x1,y1),D(x2,y2),

和橢圓方程聯(lián)立得到 ,消掉y得(3+4k2)x2+8k2x+4k2﹣12=0,

顯然△>0,方程有根,且x1+x2=﹣ ,x1x2= ,

此時|S1﹣S2|=2||y1|﹣|y2||=2|y1+y2|=2|k(x2+1)+k(x1+1)|

=2|k(x2+x1)+2k|= = = = ,(k= 時等號成立)

所以|S1﹣S2|的最大值為


【解析】(1)由焦點F坐標可求c值,根據(jù)a,b,c的平方關系可求得a值;(2)寫出直線方程,與橢圓方程聯(lián)立消掉y得關于x的一元二次方程,利用韋達定理及弦長公式即可求得|CD|;(3)當直線l不存在斜率時可得,|S1﹣S2|=0;當直線l斜率存在(顯然k≠0)時,設直線方程為y=k(x+1)(k≠0),與橢圓方程聯(lián)立消y可得x的方程,根據(jù)韋達定理可用k表示x1+x2 , x1x2 , |S1﹣S2|可轉(zhuǎn)化為關于x1 , x2的式子,進而變?yōu)殛P于k的表達式,再用基本不等式即可求得其最大值;
【考點精析】掌握橢圓的標準方程是解答本題的根本,需要知道橢圓標準方程焦點在x軸:,焦點在y軸:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足f(﹣x)=f(x),且當x<0,f(x)=3x+1,若a= ,b= ,c=2 ,則有(
A.f(a)<f(b)<f(c)
B.f(b)<f(c)<f(a)
C.f(b)<f(a)<f(c)
D.f(c)<f(a)<f(b)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標系(與直角坐標系xoy取相同的單位長度,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=2 sinθ.
(1)求圓C的直角坐標方程;
(2)設圓C與直線l交于A,B兩點,若點P坐標為(3, ),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,對任意的,恒有成立.

1)如果為奇函數(shù),求滿足的條件.

2)在(1)中條件下,若上為增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)為增函數(shù),且,則等于(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù),函數(shù).

1)當時,求的最小值;

2)當,判斷的單調(diào)性,并說明理由;

3)求實數(shù)的范圍,使得對于區(qū)間上的任意三個實數(shù),都存在以為邊長的三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中是真命題的是( )

①“若x2+y20,則x,y不全為零的否命題 ②“正多邊形都相似的逆命題

③“若m>0,則x2+x-m=0有實根的逆否命題④“若x-是有理數(shù),則x是

無理數(shù)的逆否命題

A、①②③④ B、①③④ C、②③④ D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中國詩詞大會》節(jié)目組決定把《將進酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩詞排在后六場,并要求《將進酒》與《望岳》相鄰,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場開場詩詞的排法有_____________種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.用,分別表示烏龜和兔子所行的路程,為時間,則與故事情節(jié)相吻合的是( 。

A.B.C.D.

查看答案和解析>>

同步練習冊答案