已知函數(shù)在區(qū)間內(nèi)各有一個(gè)極值點(diǎn).

(Ⅰ)求的最大值;

。á颍┊(dāng)時(shí),設(shè)函數(shù)在點(diǎn)處的切線為,若在點(diǎn)A處穿過(guò)的圖象(即動(dòng)點(diǎn)在點(diǎn)A附近沿曲線運(yùn)動(dòng),經(jīng)過(guò)點(diǎn)A時(shí),從的一側(cè)進(jìn)入另一側(cè)),求函數(shù)的表達(dá)式.

解:(I)因?yàn)楹瘮?shù)在區(qū)間內(nèi)分別有一個(gè)極值點(diǎn),所以內(nèi)分別有一個(gè)實(shí)根,

設(shè)兩實(shí)根為),則,且.于是

,且當(dāng),即,時(shí)等號(hào)成立.故的最大值是16.

(Ⅱ)解法一:由在點(diǎn)處的切線的方程是

,即,

因?yàn)榍芯在點(diǎn)處穿過(guò)的圖象,

所以兩邊附近的函數(shù)值異號(hào),則

不是的極值點(diǎn).

,且

,則都是的極值點(diǎn).

所以,即,又由,得,故

解法二:同解法一得

因?yàn)榍芯在點(diǎn)處穿過(guò)的圖象,所以兩邊附近的函數(shù)值異號(hào),于是存在).

當(dāng)時(shí),,當(dāng)時(shí),;

或當(dāng)時(shí),,當(dāng)時(shí),

設(shè),則

當(dāng)時(shí),,當(dāng)時(shí),;

或當(dāng)時(shí),,當(dāng)時(shí),

的一個(gè)極值點(diǎn),則

所以,又由,得,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年湖南卷文)(13分)

已知函數(shù)在區(qū)間內(nèi)各有一個(gè)極值點(diǎn).

(Ⅰ)求的最大值;

。á颍┊(dāng)時(shí),設(shè)函數(shù)在點(diǎn)處的切線為,若在點(diǎn)A處穿過(guò)的圖象(即動(dòng)點(diǎn)在點(diǎn)A附近沿曲線運(yùn)動(dòng),經(jīng)過(guò)點(diǎn)A時(shí),從的一側(cè)進(jìn)入另一側(cè)),求函數(shù)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:填空題

已知函數(shù),在區(qū)間內(nèi)各有一個(gè)極值點(diǎn)。直線是函數(shù)在點(diǎn)處的切線。

(1)求的取值范圍。

(2)當(dāng)在點(diǎn)處穿過(guò)函數(shù)的圖像,求實(shí)數(shù)的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試文科數(shù)學(xué)卷(湖南) 題型:解答題

(本小題滿分13分)

已知函數(shù)在區(qū)間內(nèi)各有一個(gè)極值點(diǎn).

(I)求的最大值;

(II)當(dāng)時(shí),設(shè)函數(shù)在點(diǎn)處的切線為,若在點(diǎn)處穿過(guò)函數(shù)的圖象(即動(dòng)點(diǎn)在點(diǎn)附近沿曲線運(yùn)動(dòng),經(jīng)過(guò)點(diǎn)時(shí),從的一側(cè)進(jìn)入另一側(cè)),求函數(shù)的表達(dá)式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

21. 已知函數(shù)在區(qū)間內(nèi)各有一個(gè)極值點(diǎn).

(Ⅰ)求的最大值;

(Ⅱ)當(dāng)時(shí),設(shè)函數(shù)在點(diǎn)處的切線為,若l在點(diǎn)A處穿過(guò)的圖象(即動(dòng)點(diǎn)在點(diǎn)A附近沿曲線運(yùn)動(dòng),經(jīng)過(guò)點(diǎn)A時(shí),從的一側(cè)進(jìn)入另一側(cè)),求函數(shù)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案