設(shè)數(shù)列的前n項和為,已知, ,
(1)求數(shù)列的通項公式;
(2)若,數(shù)列的前n項和為,,證明:.
(1);(2)證明過程詳見解析.
【解析】
試題分析:本題主要考查等比數(shù)列的通項公式、配湊法求通項公式、錯位相減法求和等基礎(chǔ)知識,考查學(xué)生分析問題解決問題的能力,考查轉(zhuǎn)化能力和計算能力.第一問,已知條件中只有一個等式,利用,用代替式子中的,得到一個新的表達式,兩個式子相減得到,再用配湊法,湊出等比數(shù)列,求出數(shù)列的通項公式;第二問,利用第一問的結(jié)論,先化簡表達式,再利用錯位相減法求數(shù)列的前n項和,最后的結(jié)果與2比較大小.
試題解析:(Ⅰ)∵,當時
∴ 2分
∴ 即 ()
又 ∴ ∴
∴ 即 6分
(Ⅱ)∵ ∴ 8分
∴,
∴ 12分
考點:1 由求;2 配湊法求通項公式;3 等比數(shù)列的通項公式;4 錯位相減法
科目:高中數(shù)學(xué) 來源: 題型:
1 |
a1 |
1 |
a2 |
1 |
a4 |
1 |
S1 |
1 |
S2 |
1 |
S3 |
1 |
Sn |
1 |
a1 |
1 |
a2 |
1 |
a2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
a2n |
an |
4n-1 |
2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
a1 |
1 |
a2 |
1 |
a4 |
1 |
S1 |
1 |
S2 |
1 |
S3 |
1 |
Sn |
1 |
a1 |
1 |
a2 |
1 |
a22 |
1 |
a2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
a1 |
1 |
a2 |
1 |
a4 |
1 |
S1 |
1 |
S2 |
1 |
S3 |
1 |
Sn |
2011 |
2012 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆廣西省桂林中學(xué)高三11月月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)設(shè)數(shù)列的前n項和為Sn=2n2,為等比數(shù)列,且(Ⅰ)求數(shù)列和的通項公式;
(Ⅱ)設(shè),求數(shù)列的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com