等差數(shù)列{an}中,若3a1=5a2,且a1>0,Sn為前n項和,當(dāng)Sn取得最大值時,n=
 
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由題意可得d=-
2
5
a1<0.故此數(shù)列是遞減數(shù)列,由an=a1+(n-1)d=
7-2n
5
a1≥0可得n的最大值,從而得到答案.
解答: 解:由題意可得3a1=5(a1+d),∴d=-
2
5
a1<0.故此數(shù)列是遞減數(shù)列,
所有的非負(fù)項的和最大,由an=a1+(n-1)d=
7-2n
5
a1≥0 可得n≤3.5,
又n為正整數(shù),故n為3時,Sn取得最大值,
故答案為:3.
點評:本題考查等差數(shù)列的定義和性質(zhì),通項公式,判斷此數(shù)列是遞減數(shù)列,所有的非負(fù)項的和最大,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)E(x)定義如下:對任意x∈R,當(dāng)x為有理數(shù)時,E(x)=1;當(dāng)x為無理數(shù)時,E(x)=-1;則稱函數(shù)E(x)為定義在實數(shù)上的狄利克雷拓展函數(shù).下列關(guān)于函數(shù)E(x)說法錯誤的是(  )
A、E(x)的值域為{-1,1}
B、E(x)是偶函數(shù)
C、E(x)是周期函數(shù)且
2
是E(x)的一個周期
D、E(x)在實數(shù)集上的任何區(qū)間都不是單調(diào)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
+
b
=(2,
2
,2
3
),
a
-
b
=(0,
2
,0),則cos<
a
,
b
>=(  )
A、
1
3
B、
1
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間兩點A(1,2,-1),B(4,3,1)之間的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若1,a1,a2,4成等差數(shù)列;1,b1,b2,b3,4成等比數(shù)列,則
a1-a2
b2
的值等于( 。
A、-
1
2
B、
1
2
C、±
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|
3
x-4
<-1},非空集合B={x|x2-3(a+1)x+2(3a+1)≤0}.
(1)當(dāng)a=2時,求(∁UA)∩B:
(2)命題p:x∈A,命題q:x∈B,若p是q的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-6,-1),B(2,5),則以線段AB為直徑的圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的外接圓的半徑為3,且cos(A-B)cosB-sin(A-B)sin(A+C)=
1
2
;
(1)求角A;
(2)求△ABC面積的最大值,并判斷此時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2
x-sinx,x∈[0,2π]的單調(diào)增區(qū)間為
 

查看答案和解析>>

同步練習(xí)冊答案