分析 (1),命題“?x∈R,使得x2+x+1>0”的否定是“?x∈R,都有x2+x+1≤0”;
(2),在△ABC中,若sinA>sinB⇒2RsinA>2RsinB⇒a>b⇒sinA>sinB;
(3),當f'(x0)=0時,x0不一定是函數f(x)的極值點;
(4),函數$f(x)=\frac{1}{e^x}$圖象的切線的斜率k=f′(x)=$-\frac{1}{{e}^{x}}<0$.
解答 解:對于(1),命題“?x∈R,使得x2+x+1>0”的否定是“?x∈R,都有x2+x+1≤0”,故錯;
對于(2),命題“在△ABC中,若sinA>sinB⇒2RsinA>2RsinB⇒a>b⇒sinA>sinB,故正確;
對于(3),當f'(x0)=0時,x0不一定是函數f(x)的極值點,故錯;
對于(4),函數$f(x)=\frac{1}{e^x}$圖象的切線的斜率k=f′(x)=$-\frac{1}{{e}^{x}}<0$,∴直線$y=\frac{1}{2}x+b$不能作為函數$f(x)=\frac{1}{e^x}$圖象的切線,正確.
故答案為:(2)(4)
點評 本題考查了命題真假的判定,屬于基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}+1}}{4}$ | B. | +1 | C. | $\frac{{\sqrt{3}-1}}{4}$ | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(-∞,\sqrt{6}]$ | B. | (-∞,2] | C. | $[{\sqrt{6},+∞})$ | D. | [0,$\sqrt{6}$] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x1)≥m,f(x2)<m | B. | f(x1)<m,f(x2)>m | C. | f(x1)<m,f(x2)<m | D. | f(x1)>m,f(x2)>m |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com