【題目】如圖,在正方體,點(diǎn)在線段上運(yùn)動(dòng),則下列判斷正確的是(

①平面平面

平面

③異面直線所成角的取值范圍是

④三棱錐的體積不變

A.①②B.①②④C.③④D.①④

【答案】B

【解析】

由面面垂直的判定定理判斷①,由面面平行的性質(zhì)定理判斷②,求出在特殊位置處時(shí)異面直線所成的角,判斷③,由換底求體積法判斷④.

正方體中易證直線平面,從而有,同理有,證得平面,由面面垂直判定定理得平面平面,①正確;

正方體中,,從而可得線面平行,然后可得面面平行,即平面平面,而平面,從而得平面,②正確;

當(dāng)中點(diǎn)時(shí),在平面內(nèi),正方體中仿照上面可證平面,從而,所成角為.③錯(cuò);

,由平面,知在線段上移動(dòng)時(shí),到平面距離相等,因此不變,④正確.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,折線圖和條形圖分別為某位職員2018年與2019年的家庭總收入各種用途所占比例的統(tǒng)計(jì)圖,已知2018年的家庭總收入為10萬元,2019年的儲(chǔ)蓄總量比2018年的儲(chǔ)蓄總量減少了10%,則下列說法:

2019年家庭總收入比2018年增長了8%;

②年衣食住的總費(fèi)用與2018年衣食住的總費(fèi)相同;

2019年的旅行總費(fèi)用比2018年增加了2800元;

2019年的就醫(yī)總費(fèi)用比2018年增長了5%

其中正確的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)設(shè)兩個(gè)極值點(diǎn)分別為,,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】七巧板是一種古老的中國傳統(tǒng)智力玩具,是由七塊板組成.而這七塊板可拼成許多圖形,人物、動(dòng)物、建筑物等,在18世紀(jì),七巧板流傳到了國外,至今英國劍橋大學(xué)的圖書館里還珍藏著一部《七巧圖譜》.若用七巧板(圖1為正方形),拼成一只雄雞(圖2),在雄雞平面圖形上隨機(jī)取一點(diǎn),則恰好取自雄雞雞頭或雞尾(陰影部分)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知橢圓:的離心率為,且過點(diǎn)

1)求橢圓的方程;

2)設(shè)橢圓,為橢圓上一點(diǎn),過點(diǎn)的直線交橢圓兩點(diǎn),射線交橢圓于點(diǎn)Q

i)若為橢圓上任意一點(diǎn),求的值;

ii)若點(diǎn)坐標(biāo)為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn),動(dòng)點(diǎn)在橢圓上,且使得的點(diǎn)恰有兩個(gè),動(dòng)點(diǎn)到焦點(diǎn)的距離的最大值為.

(1)求橢圓的方程;

(2)如圖,以橢圓的長軸為直徑作圓,過直線上的動(dòng)點(diǎn)作圓的兩條切線,設(shè)切點(diǎn)分別為,若直線與橢圓交于不同的兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】七巧板是一種古老的中國傳統(tǒng)智力玩具,是由七塊板組成的.而這七塊板可拼成許多圖形,例如:三角形、不規(guī)則多邊形、各種人物、動(dòng)物、建筑物等,清陸以湉《冷廬雜識》寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.在18世紀(jì),七巧板流傳到了國外,至今英國劍橋大學(xué)的圖書館里還珍藏著一部《七巧新譜》.若用七巧板拼成一只雄雞,在雄雞平面圖形上隨機(jī)取一點(diǎn),則恰好取自雄雞雞尾(陰影部分)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)參加詩詞大賽,各答3道題,每人答對每道題的概率均為,且各人是否答對每道題互不影響.

)用表示甲同學(xué)答對題目的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

)設(shè)為事件“甲比乙答對題目數(shù)恰好多2”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某多面體的三視圖如圖所示,則該多面體的各棱中,最長棱的長度為( )

A. B. C. 2 D. 1

查看答案和解析>>

同步練習(xí)冊答案