精英家教網 > 高中數學 > 題目詳情

如圖,已知四棱錐P-ABCD的底面為等腰梯形,AB∥CD,ACBD,垂足為H,PH是

四棱錐的高 ,E為AD中點;(Ⅰ)證明:PEBC;

(Ⅱ)若APB=ADB=60°,求直線PA與平面PEH所成角的正弦值。

 

【答案】

(1)略  (2)

【解析】求解和證明立體幾何問題一方面可以直接利用幾何方法,通過證明或找到線面之間的關系,依據判定定理或性質進行證明求解.

為原點, 分別為軸,線段的長為單位長, 建立空間直角坐標系如圖, 則

(Ⅰ)設

則 

可得 

因為 所以  ……………………5分

(Ⅱ)由已知條件可得

為平面的法向量

則           即因此可以取,

,可得 

所以直線與平面所成角的正弦值為…………………12分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,
求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為
6
2
,求AP的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點E是BC邊上的中點.
(1)求證:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點,AB=2,AP=2.
(1)求證:BD⊥平面PAC;
(2)求二面角E-AF-C的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點M,N分別在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求證:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步練習冊答案