(06年福建卷)(12分)
如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),
(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的大;
(III)求點(diǎn)E到平面ACD的距離。
解析:(I)證明:連結(jié)OC
在中,由已知可得
而
即
平面
(II)解:取AC的中點(diǎn)M,連結(jié)OM、ME、OE,由E為BC的中點(diǎn)知
直線OE與EM所成的銳角就是異面直線AB與CD所成的角
在中,
是直角斜邊AC上的中線,
異面直線AB與CD所成角的大小為
(III)解:設(shè)點(diǎn)E到平面ACD的距離為
在中,
而
點(diǎn)E到平面ACD的距離為
方法二:
(I)同方法一。
(II)解:以O(shè)為原點(diǎn),如圖建立空間直角坐標(biāo)系,
則
異面直線AB與CD所成角
的大小為
(III)解:設(shè)平面ACD的法向量為則
令得是平面ACD的一個(gè)法向量。
又
點(diǎn)E到平面ACD的距離
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(06年福建卷理)如圖,連結(jié)的各邊中點(diǎn)得到一個(gè)新的又連結(jié)的各邊中點(diǎn)得到,如此無限繼續(xù)下去,得到一系列三角形:,,,,這一系列三角形趨向于一個(gè)點(diǎn)M。已知則點(diǎn)M的坐標(biāo)是 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com