某活動將在遼寧沈陽舉行,組委會在沈陽某大學(xué)招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:cm),身高在175 cm以上(包括175 cm)定義為“高個子”,身高在175 cm以下(不包括175 cm)定義為“非高個子”.

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中共抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率;
(2)若從身高180 cm以上(包括180 cm)的志愿者中選出男、女各一人,求這2人身高相差5 cm以上的概率.
(1)(2)
(1)根據(jù)莖葉圖知,“高個子”有12人,“非高個子”有18人,用分層抽樣的方法,每個人被抽中的概率是
所以抽取的5人中,“高個子”有12×=2人,“非高個子”有18×=3人.
“高個子”用AB表示,“非高個子”用ab,c表示,則從這5人中選2人的情況有:(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10種,
至少有一名“高個子”被選中的情況有:(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),共7種.
因此,至少有一人是“高個子”的概率是P.
(2)由莖葉圖知,有5名男志愿者身高在180 cm以上(包括180 cm),身高分別為181 cm,182 cm,184 cm,187 cm,191 cm;有2名女志愿者身高在180 cm以上(包括180 cm),身高分別為180 cm,181 cm.抽出的2人用身高表示,則有:(181,180),(181,181),(182,180),(182,181),(184,180),(184,181),(187,180),(187,181),(191,180),(191,181),共10種情況.
身高相差5 cm以上的有:(187,180),(187,181),(191,180),(191,181),共4種情況,故這2個身高相差5 cm以上的概率為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋中裝有若干個大小相同的黑球、白球和紅球,已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是.
(1)若袋中共有10個球,
①求白球的個數(shù);
②從袋中任意摸出3個球,記得到白球的個數(shù)為X,求隨機變量X的分布列.
(2)求證:從袋中任意摸出2個球,至少得到1個黑球的概率不大于,并指出袋中哪種顏色的球的個數(shù)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了調(diào)查學(xué)生的視力情況,隨機抽查了一部分學(xué)生的視力,將調(diào)查結(jié)果分組,分組區(qū)間為,經(jīng)過數(shù)據(jù)處理,得到如下頻率分布表
分組
頻數(shù)
頻率

3
0.06

6
0.12

25





2
0.04
合計

1.00
(Ⅰ)求頻率分布表中未知量,,的值
(Ⅱ)從樣本中視力在的所有同學(xué)中隨機抽取兩人,求兩人視力差的絕對值低于的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某數(shù)學(xué)老師對本校2013屆高三學(xué)生某次聯(lián)考的數(shù)學(xué)成績進行分析,按1:50進行分層抽樣抽取的20名學(xué)生的成績進行分析,分?jǐn)?shù)用莖葉圖記錄如圖所示(部分?jǐn)?shù)據(jù)丟失),得到頻率分布表如下:


(1)求表中的值及分?jǐn)?shù)在范圍內(nèi)的學(xué)生數(shù),并估計這次考試全校學(xué)生數(shù)學(xué)成績及格率(分?jǐn)?shù)在范圍為及格);
(2)從大于等于110分的學(xué)生中隨機選2名學(xué)生得分,求2名學(xué)生的平均得分大于等于130分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)ξ為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時,ξ=0;當(dāng)兩條棱平行時,ξ的值為兩條棱之間的距離;當(dāng)兩條棱異面時,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班48人進行了問卷調(diào)查得到了如下的2×2列聯(lián)表:
 
喜愛打籃球
不喜愛打籃球
合計
男生
 
6
 
女生
10
 
 
合計
 
 
48
已知在全班48人中隨機抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的2×2列聯(lián)表補充完整(不用寫計算過程);
(2)你是否有95%的把握認為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果隨機變量XN(-1,σ2),且P(-3≤X≤-1)=0.4,則P(X≥1)等于(  ).
A.0.4B.0.3C.0.2 D.0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,一游泳者自游泳池邊上的點,沿方向游了10米,,然后任意選擇一個方向并沿此方向繼續(xù)游,則他再游不超過10米就能夠回到游泳池邊的概率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機變量x服從正態(tài)分布N(3,4),若P(x<2a-3)=P(x>a+2),則a=     

查看答案和解析>>

同步練習(xí)冊答案