求證下列不等式
(1) 
(2) 
(3) 
證明見解析
證:(1)  
   ∴    恒成立
    

 ∴ 恒成立
(2)原式  令     
   ∴     
    ∴
(3)令  

    ∴
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)設(shè)函數(shù)(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),求的單調(diào)區(qū)間;(3若對(duì)任意,恒有成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)在兩個(gè)極值點(diǎn),且
(Ⅰ)求滿足的約束條件,并在下面的坐標(biāo)平面內(nèi),畫出滿足這些條件的點(diǎn)的區(qū)域;

(II)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)為常數(shù));.若直線l1、l2與函數(shù)f(x)的圖象以及l(fā)1,y軸與函數(shù)f(x)的圖象所圍成的封閉圖形如陰影所示.
(Ⅰ)求a、b、c的值;
(Ⅱ)求陰影面積S關(guān)于t的函數(shù)S(t)的解析式;
(Ⅲ)若問是否存在實(shí)數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有兩個(gè)不同的交點(diǎn)?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

證明:若函數(shù)在點(diǎn)處可導(dǎo),則函數(shù)在點(diǎn)處連續(xù).
個(gè)是趨向的轉(zhuǎn)化,另一個(gè)是形式(變?yōu)閷?dǎo)數(shù)定義形式)的轉(zhuǎn)化.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知函數(shù) 且導(dǎo)數(shù).
(Ⅰ)試用含有的式子表示,并求單調(diào)區(qū)間; (II)對(duì)于函數(shù)圖象上的不同兩點(diǎn),如果在函數(shù)圖象上存在點(diǎn)(其中)使得點(diǎn)處的切線,則稱存在“伴侶切線”.特別地,當(dāng)時(shí),又稱存在“中值伴侶切線”.試問:在函數(shù)上是否存在兩點(diǎn)、使得它存在“中值伴侶切線”,若存在,求出、的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求下列函數(shù)在x=x0處的導(dǎo)數(shù).
(1)f(x)=cosx·sin2x+cos3x,x0=;
(2)f(x)=,x0=2;
(3)f(x)=,x0=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

        
已知函數(shù)是定義域?yàn)镽的偶函數(shù),其圖像均在x軸的上方,對(duì)任意的,都有,且,又當(dāng)時(shí),其導(dǎo)函數(shù)恒成立。
(Ⅰ)求的值;
(Ⅱ)解關(guān)于x的不等式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

="                                                                                           " (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案