A. | 關(guān)于直線x=$\frac{π}{12}$對稱 | B. | 關(guān)于直線x=$\frac{5π}{12}$對稱 | ||
C. | 關(guān)于點($\frac{π}{12}$,0)對稱 | D. | 關(guān)于點($\frac{5π}{12}$,0)對稱 |
分析 利用正弦函數(shù)的周期性、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律、誘導(dǎo)公式,求得f(x)的解析式,再利用正弦函數(shù)的圖象的對稱性,得出結(jié)論.
解答 解:∵函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為π,∴$\frac{2π}{ω}$=π,∴ω=2.
把其圖象向左平移$\frac{π}{3}$個單位后得到函數(shù)g(x)=cosωx=sin(2x+$\frac{2π}{3}$+φ)的圖象,
∴$\frac{2π}{3}$+φ=kπ+$\frac{π}{2}$,k∈Z,∴φ=-$\frac{π}{6}$,∴f(x)=sin(2x-$\frac{π}{6}$).
由于當(dāng)x=$\frac{π}{12}$時,函數(shù)f(x)=0,故A不滿足條件,而C滿足條件;
令x=$\frac{5π}{12}$,求得函數(shù)f(x)=sin$\frac{2π}{3}$=$\frac{\sqrt{3}}{2}$,故B、D不滿足條件,
故選:C.
點評 本題主要考查正弦函數(shù)的周期性、誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 底面是正多邊形,側(cè)面都是正三角形的棱錐是正棱錐 | |
B. | 各個側(cè)面都是正方形的棱柱一定是正棱柱 | |
C. | 對角面是全等的矩形的直棱柱是長方體 | |
D. | 兩底面為相似多邊形,且其余各面均為梯形的多面體必為棱臺 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {a|a≤2} | B. | {a|a≤1} | C. | {a|a≥1} | D. | {a|a≥2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $m≤\frac{7}{3}$ | B. | m≥-1 | C. | $m≤-1或m≥\frac{7}{3}$ | D. | $-1≤m≤\frac{7}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 10 | C. | 8 | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com