【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,按其數(shù)學成績(均為整數(shù))分成六組, ,…, 后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問題:
(1)補全頻率分布直方圖;
(2)估計本次考試的數(shù)學平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)用分層抽樣的方法在分數(shù)段為的學生成績中抽取一個容量為6的樣本,再從這6個樣本中任取2人成績,求至多有1人成績在分數(shù)段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|ax﹣1|
(1)若f(x)≤2的解集為[﹣3,1],求實數(shù)a的值;
(2)若a=1,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤3﹣2m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知常數(shù)數(shù)列的前項和為,且
(1)求數(shù)列的通項公式;
(2)若且數(shù)列是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍;
(3)若數(shù)列滿足:對于任意給定的正整數(shù),是否存在使 ?若存在,求的值(只要寫出一組即可);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面內(nèi)動點P與點A(﹣3,0)和點B(3,0)的連線的斜率之積為﹣ .
(1)求動點P的軌跡方程;
(2)設點P的軌跡且曲線C,過點(1,0)的直線與曲線C交于M,N兩點,記△AMB的面積為S1 , △ANB的面積為S2 , 當S1﹣S2取得最大值時,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)= .
(1)證明方程f(x)=g(x)在區(qū)間(1,2)內(nèi)有且僅有唯一實根;
(2)記max{a,b}表示a,b兩個數(shù)中的較大者,方程f(x)=g(x)在區(qū)間(1,2)內(nèi)的實數(shù)根為x0 , m(x)=max{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)內(nèi)有兩個不等的實根x1 , x2(x1<x2),判斷x1+x2與2x0的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1中,AA1⊥面ABC,AB⊥AC,且AA1=AB=AC,則異面直線AB1與BC1所成角為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體ABCDE中,四邊形ABED是直角梯形,∠BAD=90°,DE∥AB,△ACD是的正三角形,CD=AB=DE=1,BC=
(1)求證:△CDE是直角三角形
(2) F是CE的中點,證明:BF⊥平面CDE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com