【題目】已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1)且與x軸有唯一的交點(﹣1,0).
(1)求f(x)的表達式;
(2)在(1)的條件下,設(shè)函數(shù)F(x)=f(x)﹣mx,若F(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(3)設(shè)函數(shù)g(x)=f(x)﹣kx,x∈[﹣2,2],記此函數(shù)的最小值為h(k),求h(k)的解析式.

【答案】
(1)解:依題意得c=1, ,b2﹣4ac=0

解得a=1,b=2,c=1,

從而f(x)=x2+2x+1;


(2)解:F(x)=x2+(2﹣m)x+1圖象的對稱軸為直線 ,圖象開口向上,

,即m≤﹣2或m≥6時,F(xiàn)(x)在[﹣2,2]上單調(diào),

故實數(shù)m的取值范圍為(﹣∞,﹣2]∪[6,+∞);


(3)解:g(x)=x2+(2﹣k)x+1圖象的對稱軸為直線 ,圖象開口向上

,即k≤﹣2時,F(xiàn)(x)在[﹣2,2]上單調(diào)遞增,

此時函數(shù)F(x)的最小值g(k)=F(﹣2)=2k+1

即﹣2<k≤6時,F(xiàn)(x)在 上遞減,在 上遞增

此時函數(shù)F(x)的最小值

即k>6時,F(xiàn)(x)在[﹣2,2]上單調(diào)遞減,

此時函數(shù)F(x)的最小值g(k)=F(2)=9﹣2k;

綜上,函數(shù)F(x)的最小值


【解析】(1)依題意得c=1, ,b2﹣4ac=0,解方程組求出a,b,c值,可得f(x)的表達式;(2)函數(shù)F(x)=x2+(2﹣m)x+1圖象的對稱軸為直線 ,圖象開口向上,若F(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù),則區(qū)間在對稱軸的一側(cè),進而得到實數(shù)m的取值范圍;(3)g(x)=x2+(2﹣k)x+1圖象的對稱軸為直線 ,圖象開口向上,不同情況下g(x)在區(qū)間[﹣2,2]上單調(diào)性,進而可得函數(shù)的最小值為h(k)的解析式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解消費者購物情況,某購物中心在電腦小票中隨機抽取張進行統(tǒng)計,將結(jié)果分成6組,分別是: ,制成如下所示的頻率分布直方圖(假設(shè)消費金額均在元的區(qū)間內(nèi)).

1)若在消費金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票來自元和元區(qū)間(兩區(qū)間都有)的概率;

(2)為做好春節(jié)期間的商場促銷活動,商場設(shè)計了兩種不同的促銷方案.

方案一:全場商品打八五折.

方案二:全場購物滿100元減20元,滿300元減80元,滿500元減120元,以上減免只取最高優(yōu)惠,不重復減免.利用直方圖的信息分析:哪種方案優(yōu)惠力度更大,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為,圓與直線交于兩點,點的直角坐標為

(1)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中, 平面, 平面, , ,又,

1)求 與平面所成角的正弦值;

2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下說法:①不共面的四點中,任意三點不共線;

②有三個不同公共點的兩個平面重合;

③沒有公共點的兩條直線是異面直線;

④分別和兩條異面直線都相交的兩條直線異面;

一條直線和兩條異面直線都相交,則它們可以確定兩個平面.

其中正確結(jié)論的序號是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從拋物線y2=32x上各點向x軸作垂線,其垂線段中點的軌跡為E.

(1)求軌跡E的方程;

(2)已知直線ly=kx-2)(k>0)與軌跡E交于A,B兩點,且點F(2,0),若|AF|=2|BF|,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與圓,點在圓上,點在圓上.

(1)求的最小值;

(2)直線上是否存在點,滿足經(jīng)過點由無數(shù)對相互垂直的直線,它們分別與圓和圓相交,并且直線被圓所截得的弦長等于直線被圓所截得的弦長?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的函數(shù) 是奇函數(shù).
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)設(shè)關(guān)于x的函數(shù)F(x)=f(4x﹣b)+f(﹣2x+1)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A={x|(2x2﹣62x+8≤0},函數(shù)f(x)=log2x(x∈A).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)h(x)=[f(x)]2﹣log2(2x),求函數(shù)h(x)的值域.

查看答案和解析>>

同步練習冊答案