【題目】為探索課堂教學(xué)改革,江門某中學(xué)數(shù)學(xué)老師用傳統(tǒng)教學(xué)和導(dǎo)學(xué)案兩種教學(xué)方式,在甲、乙兩個平行班進(jìn)行教學(xué)實驗。為了解教學(xué)效果,期末考試后,分別從兩個班級各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,得到如下莖葉圖。記成績不低于70分者為成績優(yōu)良”。

Ⅰ)請大致判斷哪種教學(xué)方式的教學(xué)效果更佳,并說明理由;

Ⅱ)構(gòu)造一個教學(xué)方式與成績優(yōu)良列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為成績優(yōu)良與教學(xué)方式有關(guān)”?

(附:,其中是樣本容量)

獨立性檢驗臨界值表:

【答案】(Ⅰ)答案見解析;(Ⅱ)答案見解析.

【解析】試題分析

(Ⅰ) 根據(jù)莖葉圖,從數(shù)據(jù)的分布情況或平均數(shù)或中位數(shù)幾個方面來說明理由.(Ⅱ)根據(jù)條件得到列聯(lián)表,根據(jù)表求得后與臨界值表對照可得結(jié)論.

試題解析:

乙班(導(dǎo)學(xué)案教學(xué)方式)教學(xué)效果更佳.

理由1、乙班大多在70以上,甲班70分以下的明顯更多;

理由2、甲班樣本數(shù)學(xué)成績的平均分為:70.2;乙班樣本數(shù)學(xué)成績前十的平均分為:79.05,高10%以上.

理由3、甲班樣本數(shù)學(xué)成績的中位數(shù)為, 乙班樣本成績的中位數(shù)10%以上.

Ⅱ)列聯(lián)表如下:

甲班

乙班

總計

成績優(yōu)良

10

16

26

成績不優(yōu)良

10

4

14

總計

20

20

40

由上表可得

所以能在犯錯誤的概率不超過0.05的前提下認(rèn)為成績優(yōu)良與教學(xué)方式有關(guān)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,,,四邊形是菱形,.

(Ⅰ)求證:;

(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù), ),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程;

(2)當(dāng)有兩個公共點時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)上的最大值為1,求實數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市一批養(yǎng)殖專業(yè)戶投資石金錢龜養(yǎng)殖業(yè),行業(yè)協(xié)會為了了解市場行情,對石金錢龜幼苖銷售價格進(jìn)行調(diào)查。2017年12月隨機(jī)抽取500戶銷售石金錢龜幼苖的平均價格,得到如下不完整的頻率分布統(tǒng)計表:

(Ⅰ)完成統(tǒng)計表。

(Ⅱ)為了向石金錢龜養(yǎng)殖戶提供更好的幼苖銷售參考,協(xié)會決定2018年1月份從第1,3,5組中用分層抽樣方法取出7戶出售幼龜價格跟蹤調(diào)查,求第1,3,5組1月份接受調(diào)查的戶數(shù)。

(Ⅲ)在(Ⅱ)的前提下,協(xié)會決定從選出的7個養(yǎng)殖戶中隨機(jī)抽取3戶總結(jié)銷售經(jīng)驗.為了鼓勵養(yǎng)殖戶支持調(diào)查工作,協(xié)會決定:發(fā)給第1組被抽到的每戶幸運獎獎金210元,第3組被抽到的每戶幸運獎獎金70元,第5組被抽到的每戶幸運獎獎金140元.記發(fā)出的幸運獎總獎金額為元,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線上的兩個點,點的坐標(biāo)為,直線的斜率為.設(shè)拋物線的焦點在直線的下方.

)求k的取值范圍;

)設(shè)CW上一點,且,過兩點分別作W的切線,記兩切線的交點為. 判斷四邊形是否為梯形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到定點的距離比到定直線的距離小1.

(Ⅰ)求點的軌跡的方程;

(Ⅱ)過點任意作互相垂直的兩條直線,分別交曲線于點.設(shè)線段 的中點分別為,求證:直線恒過一個定點;

(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的左、右焦點分別為離心率為,兩準(zhǔn)線之間的距離為8,在橢圓上,且位于第一象限,過點作直線的垂線,過點作直線的垂線

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線的交點在橢圓,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為圓的圓心, 是圓上的動點,點在圓的半徑上,且有點上的點,滿足.

1)當(dāng)點在圓上運動時,求點的軌跡方程;

2)若斜率為的直線與圓相切,直線與(1)中所求點的軌跡交于不同的兩點, 是坐標(biāo)原點,且時,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案