已知函數(shù)f(x)=2acos2x+bsinxcosx-數(shù)學(xué)公式,且f(0)=數(shù)學(xué)公式,f(數(shù)學(xué)公式)=數(shù)學(xué)公式
(Ⅰ)函數(shù)f(x)的圖象經(jīng)過怎樣的平移才能使其對應(yīng)的函數(shù)成為奇函數(shù)?
(Ⅱ)函數(shù)f(x)的圖象經(jīng)過怎樣的平移后得到y(tǒng)=cosx.

解:由f(0)=,f()=得:a=,b=1,所以,函數(shù)f(x)=2acos2x+bsinxcosx-=sin(2x+),
(Ⅰ)思路一:函數(shù)y=f(x)的圖象關(guān)于(-,0)對稱,向右平移個單位后圖象關(guān)于原點對稱即為奇函數(shù)(平移的方法不唯一,因為函數(shù)y=f(x)的圖象對稱中心不唯一);
思路二:若函數(shù)f(x)的圖象向右平移m個單位得到函數(shù)y=sin(2x-2m+),要使其為奇函數(shù),則x=0時函數(shù)值為0(奇函數(shù)圖象關(guān)于原點對稱),即-2m+=kπ,k∈Z?m=-,k∈Z,隨k的取值不同可以得到不同的m的值,回答其中任一個即可.(運(yùn)算量雖大一些,但更具一般性).
(Ⅱ)f(x)=sin(2x+)=cos(-2x)=cos(2x-)=cos[2(x-)],方案一:先左移(x變成x+)得到函數(shù)y=cos2x,再縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉淼?倍(x變成)得到函數(shù)y=cosx;
方案二:先縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉淼?倍(x變成)得到函數(shù)y=cos(x-),再左移(x變成x+)得到函數(shù)y=cosx.
分析:利用f(0)=,f()=求得:a=,b=1,然后化簡函數(shù)利用降次、“合二為一”后得f(x)=sin(2x+),
(Ⅰ)思路一:函數(shù)向右平移個單位后圖象關(guān)于原點對稱即為奇函數(shù).
思路二:好的圖象向右平移,使之化為y=sin2x的圖象即可.
(Ⅱ)利用誘導(dǎo)公式化簡f(x)=sin(2x+)=cos[2(x-)],方案一:選向左平移,然后再伸縮變換.
方案二:先伸縮變換,然后向左平移,注意平移時x的系數(shù)問題.
點評:(。﹫D象變換的問題要特別注意題目要求由誰變到誰,不要搞錯了方向;(ⅱ)變換的源頭和結(jié)果需化為同名的三角函數(shù)且角變量的系數(shù)同號(用誘導(dǎo)公式)才能實施;(ⅲ)如果已知變換的結(jié)果探究變換的源頭,可以“倒行逆施”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案