12.已知拋物線y2=4x的準線與雙曲線4x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)交于A、B兩點,點F為拋物線的焦點,若△FAB為直角三角形,則雙曲線離心率為( 。
A.$\frac{\sqrt{17}}{2}$B.$\frac{\sqrt{15}}{3}$C.$\frac{\sqrt{57}}{3}$D.$\frac{8}{3}$

分析 根據(jù)拋物線的方程求出拋物線的準線方程和焦點坐標,結合直角三角形的性質(zhì)建立方程關系進行求解即可.

解答 解:由拋物線的標準方程得拋物線的準線為x=-1,拋物線的焦點F(1,0),
將x=-1代入雙曲線方程得4-$\frac{{y}^{2}}{^{2}}$=1,即$\frac{{y}^{2}}{^{2}}$=3,則y=±$\sqrt{3}$b,
設A(-1,$\sqrt{3}$b),B(-1,-$\sqrt{3}$b),
∵△FAB為直角三角形,
∴tan45°=$\frac{\sqrt{3}b}{2}$=1,則b=$\frac{2}{\sqrt{3}}$,
則雙曲線的方程為4x2-$\frac{{y}^{2}}{\frac{4}{3}}$=1,
即$\frac{{x}^{2}}{\frac{1}{4}}$-$\frac{{y}^{2}}{\frac{4}{3}}$=1,則a=$\frac{1}{2}$,
c=$\sqrt{\frac{1}{4}+\frac{4}{3}}$=$\frac{\sqrt{57}}{6}$,
則雙曲線的離心率e=$\frac{c}{a}$=$\frac{\frac{\sqrt{57}}{6}}{\frac{1}{2}}$=$\frac{\sqrt{57}}{3}$,
故選:C.

點評 本題主要考查雙曲線離心率的計算,根據(jù)拋物線和雙曲線的性質(zhì)建立方程是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知A∈α,AB=5,$AC=2\sqrt{2}$,且AB與α所成角的正弦值為$\frac{4}{5}$,AC與α所成的角為45°,點B,C在平面α同側(cè),則BC長的范圍為( 。
A.$[5-2\sqrt{2},5+2\sqrt{2}]$B.$[\sqrt{5},\sqrt{29}]$C.$[\sqrt{5},\sqrt{61}]$D.$[\sqrt{29},\sqrt{61}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=x2-2ax+5(a>1),g(x)=log3x,若函數(shù)f(x)的定義域與值域都是[1,a],則對于任意的x1,x2∈[1,a+1]時,總有$|{f({x_1})-g({x_2})}|≤{t^2}+2t-1$恒成立,則t的取值范圍為( 。
A.[1,3]B.[-1,3]C.[1,+∞)∪(-∞,-3]D.[3,+∞)∪(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知圓C:x2+y2+2x-3=0,直線l:x+ay+2-a=0(a∈R),則( 。
A.l與C相離B.l與C相切
C.l與C相交D.以上三個選項均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知直線l的參數(shù)方程為:$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),曲線C1的極坐標方程為:ρ=1.
(1)寫出曲線C1的直角坐標方程及其參數(shù)方程;
(2)若把曲線C1上各點的橫坐標壓縮為原來的$\frac{1}{2}$倍,縱坐標壓縮為原來的$\frac{{\sqrt{3}}}{2}$倍,得到曲線C2,設點P是曲線C2上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.觀察下列等式:
a2-b2=(a-b)(a+b)
a3-b3=(a-b)(a2+ab+b2
a4-b4=(a-b)(a3+a2b+ab2+b3),…,
照此規(guī)律,an-bn=(a-b)(an-1+an-2b+…+abn-2+bn-1)(n≥2,n∈N)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如圖,矩形ABCD的邊AB在x軸上,頂點C,D在函數(shù)y=x+$\frac{1}{x}({x>0})$的圖象上.記AB=m,BC=n,則$\frac{m}{n^2}$的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,則輸出s的值為(  )
A.$\frac{3}{2}$B.$\frac{7}{4}$C.$\frac{23}{12}$D.$\frac{49}{24}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知三角形ABC的三個頂點A(6,3),B(9,3),C(3,6),求$\overrightarrow{AB}$•$\overrightarrow{AC}$和∠BAC的大。

查看答案和解析>>

同步練習冊答案