8.已知i為虛數(shù)單位,則($\frac{1+i}{1-i}$)2=(  )
A.1B.-1C.iD.-i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i,
∴($\frac{1+i}{1-i}$)2=i2=-1.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計(jì)算:
(1)(1+i)(1-i)+(1+2i)2;
(2)$\frac{(3-2i)^{2}-3(1-i)}{2+i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某媒體對(duì)“男女延遲退休”這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,如表是在某單位得到的數(shù)據(jù)(人數(shù)):
(1)能否有90%以上的把握認(rèn)為對(duì)這一問題的看法與性別有關(guān)?
贊同反對(duì)合計(jì)
5611
11314
合計(jì)16925
(2)從贊同“男女延遲退休”16人中選出3人進(jìn)行陳 述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率;
(3)若以這25人的樣本數(shù)據(jù)來估計(jì)整個(gè)地區(qū)的總體數(shù)據(jù),現(xiàn)從該地區(qū)(人數(shù)很多)任選5人,記贊同“男女延遲退休”的人數(shù)為X,求X的數(shù)學(xué)期望.
附:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.己知函數(shù)f(x)=x2+(a+1)x+b
(1)若函數(shù)在[1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)函數(shù)f(x)的圖象過點(diǎn)(3,3)且滿足f(x)≥x恒成立,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,則以下步驟可以得到函數(shù)f(x)的圖象的是( 。
A.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來的2倍,然后再向左平移$\frac{π}{6}$個(gè)單位
B.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來的2倍,然后再向右平移$\frac{π}{6}$個(gè)單位
C.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來的$\frac{1}{2}$,然后再向右平移$\frac{π}{12}$個(gè)單位
D.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來的$\frac{1}{2}$,然后再向左平移$\frac{π}{12}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知i為虛數(shù)單位,實(shí)數(shù)a與純虛數(shù)z滿足(2-i)z=4-ai,則a的值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.小張、小王、小李三名大學(xué)生到三個(gè)城市去實(shí)習(xí),每人只去一個(gè)城市,設(shè)事件A為“三個(gè)人去的城市都不同”事件B為“小張單獨(dú)去了一個(gè)城市”,則P(A|B)=( 。
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x|-1<x<1},N={x|x2<4,x∈Z},則( 。
A.M∩N={0}B.N⊆MC.M⊆ND.M∪N=N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.實(shí)數(shù)x,y滿足(1+i)x+(1-i)y=2,設(shè)z=x+yi,則下列說法錯(cuò)誤的是( 。
A.z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限B.|z|=$\sqrt{2}$
C.z的虛部是iD.z的實(shí)部是1

查看答案和解析>>

同步練習(xí)冊(cè)答案