【題目】若a>b>1,0<c<1,則( )
A.ac<bc
B.abc<bac
C.ca<cb
D.logac<logbc
【答案】C
【解析】解:A、因為0<c<1,所以函數(shù)y=xc在(0,+∞)上遞增,
又a>b>1,則ac>bc , A不正確;
B、因為0<c<1,所以c﹣1<0,函數(shù)y=xc﹣1在(0,+∞)上遞減,
又a>b>1,則ac﹣1<bc﹣1 , 兩邊同除以ab可得:abc>bac , B不正確;
C、因為0<c<1,所以函數(shù)y=cx在定義域上遞減,
又a>b>1,則cb>ca , C正確;
D、因為0<c<1,所以函數(shù) 在(0,+∞)上遞減,
又a>b>1,則 ,即 ,
所以 ,D不正確,
故選:C.
根據(jù)冪函數(shù)的單調(diào)性和條件判斷A和B,根據(jù)指數(shù)函數(shù)的單調(diào)性判斷C,根據(jù)對數(shù)函數(shù)的單調(diào)性和對數(shù)的運(yùn)算性質(zhì)判斷D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x∈R,cos2x﹣sinx+2≤m;q:函數(shù) 在[1,+∞)上單調(diào)遞減.
(I)若p∧q為真命題,求m的取值范圍;
(II)若p∨q為真命題,p∧q為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,且acosC,bcosB,ccosA成等差數(shù)列.
(1)求角B的大。
(2)求2sin2A+cos(A﹣C)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2x2+bx+c,不等式f(x)<0的解集為(0,5).
(1)求b,c的值;
(2)若對任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log3 ,g(x)=﹣2ax+a+1,h(x)=f(x)+g(x).
(Ⅰ)當(dāng)a=﹣1時,證明h(x)是奇函數(shù);
(Ⅱ)若關(guān)于x的方程f(x)=log3g(x)有兩個不等實數(shù)根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明騎車上學(xué),開始時勻速行駛,途中因交通堵塞停留了一段時間,后為了趕時間加快速度行駛.與以上事件吻合得最好的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com