函數(shù)f(x)=log2|ax-1|的對稱軸為x=2,則非零實數(shù)a的值是


  1. A.
    -2
  2. B.
    2
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:本題由于外函數(shù)不具備對稱性,而內(nèi)函數(shù)具有對稱性,所以解題的關(guān)鍵是分析內(nèi)函數(shù)的對稱性.函數(shù)y=a|x-b|(a≠0)的對稱軸為x=b,所以解題的切入點是將內(nèi)函數(shù)的一次項系數(shù)化為1.
解答:(利用含絕對值符號函數(shù)的對稱性)
y=log2|ax-1|=log2|a(x-)|,
對稱軸為x=
=2
得a=
故選C.
點評:含絕對值符號的函數(shù)是分段函數(shù)的重要類型,而絕對值函數(shù)的對稱性又是絕對值函數(shù)的重要考點,其處理步驟為:分析絕對值符號內(nèi)函數(shù)的對稱性,若為二次函數(shù),則對稱軸保持不變;若為一次函數(shù),則將其一次項系數(shù)化為1,即化為y=a|x-b|(a≠0)的形式,其對稱軸為x=b
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實數(shù)a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當(dāng)x∈[3,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時,其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案