分析 (1)利用22x=(2x)2,把看似不識的函數(shù)轉(zhuǎn)化為f(x)=h(t)=t2-2t+3=(t-1)2+2.再利用的二次函數(shù)求解.
(2)若x∈[m,0],即m≤0時(shí),則t∈[2m,2],結(jié)合函數(shù)h(t)的圖象可知,∴f(x)min=h(1)=2,f(x)max=h(2m)=22m-2 m+1+3.
解答 解:∵f(x)=22x-2•2x+3,令2x=t,所以f(x)=h(t)=t2-2t+3=(t-1)2+2.
(1)若x∈[-1,2],則$t∈[{\frac{1}{2},4}]$,當(dāng)t=4時(shí),h(t)max=h(4)=11.
(2)若x∈[m,0],即m≤0時(shí),則t∈[2m,1],當(dāng)0<2m≤1,結(jié)合函數(shù)h(t)的圖象可知,h(t)在[2m,]1上遞減,
∴f(x)min=h(1)=2,f(x)max=h(2m)=22m-2 m+1+3.
點(diǎn)評 本題主要考查求二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,問題的關(guān)鍵是能否把我們不熟悉的函數(shù)轉(zhuǎn)化為我們熟悉的二次函數(shù).而且采用換元法轉(zhuǎn)化函數(shù)的時(shí)候,一定要注意換元后變量的范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題:若x=y,則sinx=siny的逆否命題為真命題 | |
B. | x>2是x2-3x+2>0的必要不充分條件 | |
C. | 命題:若x2=1,則x=1的否命題為“若x2=1,則x≠1” | |
D. | 命題:?x∈R使得x2+x+1<0的否定為:?x∈R均有x2+x+1<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin(x+\frac{π}{6})$ | B. | $y=sin(x-\frac{π}{6})$ | C. | $y=sin(x-\frac{2π}{3})$ | D. | $y=sin(x+\frac{2π}{3})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com