16.若復數(shù)z=$\frac{2}{1+i}$+(1-i)2,則|z|等于( 。
A.$\sqrt{10}$B.$\sqrt{2}$C.2D.$\sqrt{5}$

分析 化簡復數(shù)z,求出它的模長即可.

解答 解:因為z=z=$\frac{2}{1+i}$+(1-i)2=$\frac{2(1-i)}{(1+i)(1-i)}$-2i=1-i-2i=1-3i,
所以|z|=$\sqrt{{1}^{2}+(-3)^{2}}$=$\sqrt{10}$,
故選:A.

點評 本題考查了復數(shù)的化簡與模長的計算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.命題“$?{x_0}∈R,使得x_0^2≥0$”的命題的否定為?x∈R,使得x2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,如果輸出的$S=\frac{7}{15}$,則輸入的n( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知p:實數(shù)x滿足(x-a)(x-3a)<0,其中a>0;q:實數(shù)x滿足$\frac{x-3}{x-2}≤0$.
(1)若a=1,且p,q均正確,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設a=2,b=lg9,c=2sin$\frac{9π}{5}$,則a,b,c的大小關系為( 。
A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.直線2x-y+a=0與3x+y-3=0交于第一象限,當點P(x,y)在不等式組$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$表示的區(qū)域上運動時,m=4x+3y的最大值為8,此時n=$\frac{y}{x+3}$的最大值是( 。
A.$\frac{1}{4}$B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=Asin(ωx+φ)+B (A>0,ω>0,|φ|<$\frac{π}{2}$)的最大值為2$\sqrt{2}$,最小值為-$\sqrt{2}$,周期為π,且圖象過(0,-$\frac{\sqrt{2}}{4}$).
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=ex-ax-1,g(x)=lnx-ax+a,若存在x0∈(1,2),使得f(x0)g(x0)<0,則實數(shù)a的取值范圍是(  )
A.$(ln2,\frac{{{e^2}-1}}{2})$B.(ln2,e-1)C.[1,e-1)D.$[1,\frac{{{e^2}-1}}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.甲乙丙三人一起參加機動車駕駛證科目考三試后,與丁相聚,丁詢問甲乙丙的考試結果,甲說:“我通過了.”,乙說:“我和甲都通過了.”,丙說:“我和乙都通過了.”甲乙丙三人有且只有一個人說的內容與考試結果不完全相同,甲乙丙中沒有通過的是丙.

查看答案和解析>>

同步練習冊答案