【題目】已知命題P:不等式a2﹣4a+3<0的解集;命題Q:使(a﹣2)x2+2(a﹣2)x﹣4<0對(duì)任意實(shí)數(shù)x恒成立的實(shí)數(shù)a,若P∨Q是真命題,求實(shí)數(shù)a的取值范圍.

【答案】解:不等式a2﹣4a+3<0得,1<a<3, 所以命題為; 1<a<3,
由不等式(a﹣2)x2+2(a﹣2)x﹣4<0對(duì)任意實(shí)數(shù)x恒成立;
得a
a=2 或 ,
解得﹣2<a≤2,
∵P∨Q是真命題,
∴a的取值范圍是﹣2<a<3
【解析】據(jù)復(fù)合函數(shù)單調(diào)性的判定方法,我們可以判斷出命題p滿足時(shí),參數(shù)a的取值范圍,進(jìn)而根據(jù)二次不等式恒成立的充要條件,我們易判斷出命題q滿足時(shí),參數(shù)a的取值范圍,進(jìn)而根據(jù)p∨q是真命題,易得到滿足條件的實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解復(fù)合命題的真假(“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù) 的圖象,只需將函數(shù)y=sin2x的圖象上每一點(diǎn)( )
A.向左平移 個(gè)單位長度
B.向左平移 個(gè)單位長度
C.向右平移 個(gè)單位長度
D.向右平移 個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 有兩個(gè)零點(diǎn).
(1)若函數(shù)的兩個(gè)零點(diǎn)是 ,求 的值;
(2)若函數(shù)的兩個(gè)零點(diǎn)是 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),φ(x)滿足關(guān)系φ(x)=f(x)f(x+α)(其中α是常數(shù)).
(1)如果α=1,f(x)=2x﹣1,求函數(shù)φ(x)的值域;
(2)如果α= ,f(x)=sinx,且對(duì)任意x∈R,存在x1 , x2∈R,使得φ(x1)≤φ(x)≤φ(x2)恒成立,求|x1﹣x2|的最小值;
(3)如果f(x)=Asin(ωx+)(A>0,ω>0),求函數(shù)φ(x)的最小正周期(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 的圖象上所有點(diǎn)向左平行移動(dòng) 個(gè)單位長度,得到函數(shù)g(x)的圖象,則g(x)圖象的一條對(duì)稱軸的方程是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=cos(x+ )的圖象,只需把余弦曲線y=cosx上的所有的點(diǎn)( )
A.向左平移 個(gè)單位長度
B.向右平移 個(gè)單位長度
C.向左平移 個(gè)單位長度
D.向右平移 個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 的內(nèi)角 的對(duì)邊分別為 ,已知
(Ⅰ)求角 的大。
(Ⅱ)若 ,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P與兩定點(diǎn)A(﹣2,0),B(2,0)連線的斜率之積為﹣ . (Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)若過點(diǎn)F(﹣ ,0)的直線l與軌跡C交于M、N兩點(diǎn),且軌跡C上存在點(diǎn)E使得四邊形OMEN(O為坐標(biāo)原點(diǎn))為平行四邊形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若 ,△ABC的面積為 ,求a+b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案