已知:關(guān)于x的方程2x2+kx-1=0
(1)求證:方程有兩個不相等的實(shí)數(shù)根;
(2)若方程的一個根是-1,求另一個根及k值.

解:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,
無論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個不相等的實(shí)數(shù)根.
(2)設(shè)2x2+kx-1=0的另一個根為x,
,,
解得:,k=1,∴2x2+kx-1=0的另一個根為,k的值為1.
分析:(1)方程有兩個不相等的實(shí)數(shù)根?△≥0,故只需求出△,判斷△≥0恒成立即可.
(2)方程的一個根是-1,將x=-1代入到方程中即可求出k,由維達(dá)定理即可求出另一個根.
點(diǎn)評:本題考查二次方程的根的問題、二次方程根和系數(shù)的關(guān)系,屬基礎(chǔ)知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程2x2+kx-1=0
(1)求證:方程有兩個不相等的實(shí)數(shù)根;
(2)若方程的一個根是-1,求另一個根及k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程2x2-(
3
+1)x+m=0的兩根為sinθ和cosθ,θ∈(0,2π).求:
(1)
tanθsinθ
tanθ-1
+
cosθ
1-tanθ
的值;
(2)m的值;
(3)方程的兩根及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在關(guān)于x的方程ax2-
2
bx+c=0中,a、b、c分別是鈍角三角形ABC的三內(nèi)角A、B、C所對的邊,且b是最大邊.
(1)求證:該方程有兩個不相等的正根;
(2)設(shè)方程有兩個不相等的正根α、β,若三角形ABC是等腰三角形,求α-β的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:關(guān)于x的方程2x2+kx-1=0
(1)求證:方程有兩個不相等的實(shí)數(shù)根;
(2)若方程的一個根是-1,求另一個根及k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第1章 三角函數(shù)》2013年單元測試卷(3)(解析版) 題型:解答題

已知:關(guān)于x的方程2x2-(+1)x+m=0的兩根為sinθ和cosθ,θ∈(0,2π).求:
(1)+的值;
(2)m的值;
(3)方程的兩根及此時(shí)θ的值.

查看答案和解析>>

同步練習(xí)冊答案