對(duì)于函數(shù),若存在實(shí)數(shù),使成立,則稱(chēng)為的不動(dòng)點(diǎn).
(1)當(dāng)時(shí),求的不動(dòng)點(diǎn);
(2)若對(duì)于任何實(shí)數(shù),函數(shù)恒有兩相異的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若的圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線(xiàn)是線(xiàn)段的垂直平分線(xiàn),求實(shí)數(shù)的最小值.
解
(1)當(dāng)=2,=-2時(shí),
設(shè)為其不動(dòng)點(diǎn),即
則 即的不動(dòng)點(diǎn)是-1,2
(2)由得:. 由已知,此方程有相異二實(shí)根,
恒成立,即即對(duì)任意恒成立.
(3)設(shè),
直線(xiàn)是線(xiàn)段AB的垂直平分線(xiàn), ∴
記AB的中點(diǎn)由(2)知
化簡(jiǎn)得:時(shí),等號(hào)成立).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于函數(shù),若存在實(shí)數(shù),使成立,則稱(chēng)為的不動(dòng)點(diǎn).
(1)當(dāng)時(shí),求的不動(dòng)點(diǎn);
(2)若對(duì)于任何實(shí)數(shù),函數(shù)恒有兩相異的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若的圖象上、兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線(xiàn)是線(xiàn)段的垂直平分線(xiàn),求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江省溫州市高三第一次適應(yīng)性測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
.對(duì)于函數(shù),若存在實(shí)數(shù),使得成立,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江省溫州市高三第一次適應(yīng)性測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
對(duì)于函數(shù),若存在實(shí)數(shù),使得成立,則實(shí)數(shù)的取值范圍是( ) w
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆海南省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
對(duì)于函數(shù),若存在實(shí)數(shù),使成立,則稱(chēng)為的不動(dòng)點(diǎn).
⑴當(dāng)時(shí),求的不動(dòng)點(diǎn);
⑵若對(duì)于任何實(shí)數(shù),函數(shù)恒有兩相異的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
⑶在⑵的條件下,若的圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線(xiàn)是線(xiàn)段AB的垂直平分線(xiàn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com