(本小題滿分14分)
設(shè)是定義在上的函數(shù),用分點

將區(qū)間任意劃分成個小區(qū)間,如果存在一個常數(shù),使得和式)恒成立,則稱上的有界變差函數(shù).
(1)函數(shù)上是否為有界變差函數(shù)?請說明理由;
(2)設(shè)函數(shù)上的單調(diào)遞減函數(shù),證明:上的有界變差函數(shù);
(3)若定義在上的函數(shù)滿足:存在常數(shù),使得對于任意的、 時,.證明:上的有界變差函數(shù).

解:(1)函數(shù)上是增函數(shù), 對任意劃分
 ,
取常數(shù),則和式)恒成立,
所以函數(shù)上是有界變差函數(shù).          …………4分
(2)函數(shù)上的單調(diào)遞減函數(shù),
且對任意劃分

,
一定存在一個常數(shù),使,
上的有界變差函數(shù).                    …………9分
(3)
對任意劃分
,
取常數(shù),
由有界變差函數(shù)定義知上的有界變差函數(shù). …………14分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知定義在區(qū)間上的函數(shù)為奇函數(shù)且
(1)求實數(shù)m,n的值;
(2)求證:函數(shù)上是增函數(shù)。
(3)若恒成立,求t的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)對任意都有且x>0時,<0, .(1)求在區(qū)間[-3,3]上的最大和最小值,(2)解關(guān)于x的不等式,(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
求下列函數(shù)的定義域  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
為了預(yù)防流感,某段時間學(xué)校對教室用藥熏消毒法進行消毒.設(shè)藥物開始釋放后第小時教室內(nèi)每立方米空氣中的含藥量為毫克.已知藥物釋放過程中,教室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,yt的函數(shù)關(guān)系式為a為常數(shù)).函數(shù)圖象如圖所示.
根據(jù)圖中提供的信息,解答下列問題:
(1)求從藥物釋放開始每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數(shù)關(guān)系式;

(第17題圖)

 
(2)按規(guī)定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進教室,那么從藥物釋放開始,至少需要經(jīng)過多少時間,學(xué)生才能回到教室?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
2010年推出一種新型家用轎車,購買時費用為14.4萬元,每年應(yīng)交付保險費.養(yǎng)路費及汽油費共0.7萬元,汽車的維修費為:第一年無維修費用,第二年為0.2萬元,從第三年起,每年的維修費均比上一年增加0.2萬元.  
(1)設(shè)該輛轎車使用n年的總費用(包括購買費用.保險費.養(yǎng)路費.汽油費及維修費)為f(n),求f(n)的表達式;
(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)在其定義域上滿足
(1)函數(shù)的圖象是否是中心對稱圖形?若是,請指出其對稱中心(不證明);
(2)當(dāng)時,求x的取值范圍;
(3)若,數(shù)列滿足,那么:
①若,正整數(shù)N滿足時,對所有適合上述條件的數(shù)列,恒成立,求最小的N;
②若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
把下列各式分解因式
(1)         (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
小劉家要建造一個長方形無蓋蓄水池,其容積為48,深為3.如果池底每平方米的造價為150元,池壁每平方米的造價為120元,怎樣設(shè)計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

同步練習(xí)冊答案