等差數(shù)列{an},公差d=2,若a2,a4,a8成等比數(shù)列,則{an}的前n項和Sn等于
 
考點:等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:直接利用等差數(shù)列以及等比數(shù)列求出等差數(shù)列的首項然后求解數(shù)列的Sn
解答: 解:等差數(shù)列{an},公差d=2,若a2,a4,a8成等比數(shù)列,
所以(a42=a2•a8,可得(a1+6)2=(a1+2)(a1+14),解得a1=2.
則{an}的前n項和Sn=2n+
n(n-1)
2
×2
=n2+n.
故答案為:n2+n.
點評:本題首先考查等差數(shù)列、等比數(shù)列的基本量、通項,結(jié)合含兩個變量的不等式的處理問題,對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,求2sinαcosα-3cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,a=10,B=60°,C=45°,解此三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x||x|<1},B={x|x>-
1
2
}
,則(∁UB)∩A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,1)上單調(diào)遞減的函數(shù)為( 。
A、y=
1
x
B、y=lnx
C、y=cosx
D、y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列三角函數(shù)式的值
(1)cos105°;
(2)cos(α-45°)cos(15°+α)+sin(α-45°)sin(15°+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x,g(x)=-x2+2x+b(b∈R),記h(x)=f(x)-
1
f(x)

(1)判斷h(x)的奇偶性,并證明;
(2)f(x)在x∈[1,2]的上的最大值與g(x)在x∈[1,2]上的最大值相等,求實數(shù)b的值;
(3)若2xh(2x)+mh(x)≥0對于一切x∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax2,a為常數(shù).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個零點x1、x2,試證明:x1x2>e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(2x-1)5+(x+2)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,則|a0|+|a1|+|a2|+|a5|=( 。
A、242B、110
C、105D、82

查看答案和解析>>

同步練習(xí)冊答案