(15分)已知橢圓的對稱軸在坐標軸上,短軸的一個端點與兩個焦點組成一個等邊三角形,

(1)求橢圓的離心率;

(2)若焦點到同側(cè)頂點的距離為,求橢圓的方程.

 

【答案】

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的對稱軸是坐標軸,以短軸的一個端點和兩焦點為頂點的三角形是正三角形,且焦點到橢圓的最短距離是,求此橢圓方程,并寫出其中焦點在y軸上的橢圓的焦點坐標、離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北武漢部分重點中學高二下學期期中考試理數(shù)學試卷(解析版) 題型:解答題

已知橢圓的對稱軸為坐標軸,焦點是(0,),(0,),又點在橢圓上.

(1)求橢圓的方程;

(2)已知直線的斜率為,若直線與橢圓交于、兩點,求面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆內(nèi)蒙古高三第二次模擬考試文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)已知橢圓的對稱軸為坐標軸,焦點在軸上,離心率,分別為橢圓的上頂點和右頂點,且

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線與橢圓相交于兩點,且(其中為坐標原點),求的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年黑龍江省高三上學期期末考試文科數(shù)學試卷 題型:解答題

已知橢圓的對稱軸為坐標軸,且拋物線的焦點是橢圓的一個焦點,又點在橢圓上.

(1)求橢圓M的方程;

(2)已知直線的方向向量為  ,若直線與橢圓交于兩點,求面積的最大值.

 

查看答案和解析>>

同步練習冊答案