已知橢圓C的焦點(diǎn)F1(-,0)和F2(,0),長(zhǎng)軸長(zhǎng)6。
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)。
(1)(2)。
【解析】
試題分析:(1)由F1(-,0)和F2(,0),長(zhǎng)軸長(zhǎng)為6得:c=2,a=3,所以b=1。所以橢圓方程為。
(2)設(shè)A()B(),由(1)可知橢圓方程為 ,與直線AB的方程y=x+2聯(lián)立化簡(jiǎn)并整理得10x2+36x+27=0,∴x1+x2=,,。所以AB的中點(diǎn)的坐標(biāo)為。
考點(diǎn):本題考查直線與圓錐曲線的綜合問(wèn)題;橢圓的標(biāo)準(zhǔn)方程;中點(diǎn)坐標(biāo)公式。
點(diǎn)評(píng):此題的第二問(wèn)也可以用點(diǎn)差法,一般情況下,遇到弦中點(diǎn)的問(wèn)題可以先考慮點(diǎn)差法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
2 |
9 |
5 |
1 |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
2 |
9 |
5 |
1 |
5 |
9 |
5 |
1 |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C的焦點(diǎn)F1(-,0)和F2(,0),長(zhǎng)軸長(zhǎng)6,設(shè)直線交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com