【題目】已知函數(shù).

(1)當時,討論的單調(diào)性;

(2)當時,若,證明:當時, 的圖象恒在的圖象上方;

(3)證明: .

【答案】(1)單調(diào)增區(qū)間為,減區(qū)間為;(2)詳見解析;(3)詳見解析.

【解析】試題分析(1)求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)時, ,設(shè),求出函數(shù)的導數(shù),利用導數(shù)性質(zhì)推導出恒成立,由此能證明的圖象恒在圖象的上方;(3)由,設(shè),求出函數(shù)的導數(shù),從而,令,得,從而證明結(jié)論成立即可.

試題解析:(1)當時,,則,

的單調(diào)增區(qū)間為,減區(qū)間

(2)當時,,令,

時,,遞減;當時,,遞增。

,當時,,即恒成立,

所以的圖象恒在的圖象上方。

(3)由(2)知,即,

,則,即,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知: =(2sinx,2cosx), =(cosx,﹣cosx),f(x)=
(1)若 共線,且x∈( ,π),求x的值;
(2)求函數(shù)f(x)的周期;
(3)若對任意x∈[0, ]不等式m﹣2≤f(x)≤m+ 恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin ωxcos ωx-sin2ωx+1(ω>0)圖象的相鄰兩條對稱軸之間的距離為.

()ω的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;

()如圖,在銳角三角形ABC中有f(B)=1若在線段BC上存在一點D使得AD=2AC,CD-1,求三角形ABC的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線 (t為參數(shù)), ( 為參數(shù)).
(1)化 , 的方程為普通方程,并說明它們分別表示什么曲線;
(2)過曲線 的左頂點且傾斜角為 的直線 交曲線 兩點,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐曲線 為參數(shù))和定點 F1 , F2是圓錐曲線的左右焦點。
(1)求經(jīng)過點F2且垂直于直線AF1的直線l的參數(shù)方程;
(2)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,求直線AF2的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線 (t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的坐標方程為
(1)將曲線C的極坐標方程化為直坐標方程;
(2)設(shè)點M的直角坐標為 ,直線l與曲線C的交點為A,B,求|MA||MB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答
(1)設(shè)全集為R,A={x|3<x<7},B={x|4<x<10},求R(A∪B)及(RA)∩B.
(2)C={x|a﹣4≤x≤a+4},且A∩C=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左、右焦點分別為,且離心率為,點為橢圓上一動點, 內(nèi)切圓面積的最大值為.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點為,過右焦點的直線與橢圓相交于兩點,連接并延長分別交直線兩點,以為直徑的圓是否恒過定點?若是,請求出定點坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).

(1)當t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學關(guān)系式表示出來.

查看答案和解析>>

同步練習冊答案