【題目】在正方體ABCD﹣A1B1C1D1中,P,Q分別為棱BC和棱CC1的中點,則下列說法正確的是( )
A.BC1//平面AQP
B.平面APQ截正方體所得截面為等腰梯形
C.A1D⊥平面AQP
D.異面直線QP與A1C1所成的角為60°
【答案】ABD
【解析】
對于A,利用線面平行的判定定理即可判斷;對于B,連接AP,AD1,D1Q即可求解.對于C,利用線面垂直的性質(zhì)定理即可判斷;對于D,根據(jù)異面直線所成角的定義即可求解.
在正方體ABCD﹣A1B1C1D1中,P,Q分別為棱BC和棱CC1的中點,
如圖所示:
對于選項A:P,Q分別為棱BC和棱CC1的中點,
所以PQ//BC1,由于PQ平面APQ,BC1不在平面APQ內(nèi),
所以BC1//平面APQ,故選項A正確.
對于選項B:連接AP,AD1,D1Q,
由于AD1//PQ,D1Q=AP,所以平面APQ截正方體所得截面為等腰梯形,故選項B正確.
對于選項C:由于A1D⊥平面ABC1D1,平面ABC1D1和平面APQD1為相交平面,
所以A1D⊥平面AQP是錯誤的,故選項C錯誤.
對于選項D:PQ//BC1,△A1BC1為等邊三角形,所以∠A1C1B=60°,
即異面直線QP與A1C1所成的角為60°,故選項D正確.
故選:ABD.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足,,則下列說法正確的是( )
A.在處取得極小值,極小值為
B.只有一個零點
C.若在上恒成立,則
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,再隨機(jī)抽取3人贈送禮品,記這3人中“微信控”的人數(shù)為,試求的分布列和數(shù)學(xué)期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,點在平面內(nèi)運動,使得二面角的平面角與二面角的平面角互余,則點的軌跡是( )
A. 一段圓弧 B. 橢圓的一部分 C. 拋物線 D. 雙曲線的一支
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某學(xué)科成績是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高二年級抽取了名男生和名女生的該學(xué)科成績,得到如圖所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定分以上為優(yōu)分(含分).
(1)(i)請根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整;
優(yōu)分 | 非優(yōu)分 | 總計 | |
男生 | |||
女生 | |||
總計 | 50 |
(ii)據(jù)列聯(lián)表判斷,能否在犯錯誤概率不超過的前提下認(rèn)為“學(xué)科成績與性別有關(guān)”?
(2)將頻率視作概率,從高二年級該學(xué)科成績中任意抽取名學(xué)生的成績,求成績?yōu)閮?yōu)分人數(shù)的分布列與數(shù)學(xué)期望.
參考公式:.
參考數(shù)據(jù):
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.已知隨機(jī)變量,若.則
B.已知分類變量與的隨機(jī)變量的觀察值為,則當(dāng)的值越大時,“與有關(guān)”的可信度越小.
C.在線性回歸模型中,計算其相關(guān)指數(shù),則可以理解為:解析變量對預(yù)報變量的貢獻(xiàn)率約為
D.若對于變量與的組統(tǒng)計數(shù)據(jù)的線性回歸模型中,相關(guān)指數(shù).又知殘差平方和為.那么.(注意:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2019年高考數(shù)學(xué)的全國Ⅲ卷中,文科和理科的選做題題目完全相同,第22題考查選修4-4:極坐標(biāo)和參數(shù)方程;第23題考查選修4-5:不等式選講.某校高三質(zhì)量檢測的命題采用了全國Ⅲ卷的形式,在測試結(jié)束后,該校數(shù)學(xué)組教師對該校全體高三學(xué)生的選做題得分情況進(jìn)行了統(tǒng)計,得到兩題得分的列聯(lián)表如下(已知每名學(xué)生只做了一道題):
選做22題 | 選做23題 | 合計 | |
文科人數(shù) | 50 | 60 | |
理科人數(shù) | 40 | ||
總計 | 400 |
(1)完善列聯(lián)表中的數(shù)據(jù),判斷能否有的把握認(rèn)為“選做題的選擇”與“文、理科的科類”有關(guān);
(2)經(jīng)統(tǒng)計,第23題得分為0的學(xué)生中,理科生占理科總?cè)藬?shù)的,文科生占文科總?cè)藬?shù)的,在按分層抽樣的方法在第23題得分為0的學(xué)生中隨機(jī)抽取6名進(jìn)行單獨輔導(dǎo),并在輔導(dǎo)后隨機(jī)抽取2名學(xué)生進(jìn)行測試,求被抽中進(jìn)行測試的2名學(xué)生均為理科生的概率.
附:,其中.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次比賽中,某隊的六名隊員均獲得獎牌,共獲得4枚金牌2枚銀牌,在頒獎晚會上,這六名隊員與1名領(lǐng)隊排成一排合影,若兩名銀牌獲得者需站在領(lǐng)隊的同側(cè),則不同的排法共有______種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學(xué)會盲擰也是很容易的.為了解某市盲擰魔方愛好者的水平狀況,某興趣小組在全市范圍內(nèi)隨機(jī)抽取了名魔方愛好者進(jìn)行調(diào)查,得到的情況如表所示:
用時(秒) | ||||
男性人數(shù) | 15 | 22 | 14 | 9 |
女性人數(shù) | 5 | 11 | 17 | 7 |
附:,.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(1)將用時低于秒的稱為“熟練盲擰者”,不低于秒的稱為“非熟練盲擰者”.請根據(jù)調(diào)查數(shù)據(jù)完成以下列聯(lián)表,并判斷是否有的把握認(rèn)為是否為“熟練盲擰者”與性別有關(guān)?
熟練盲擰者 | 非熟練盲擰者 | |
男性 | ||
女性 |
(2)以這名盲擰魔方愛好者的用時不超過秒的頻率,代替全市所有盲擰魔方愛好者的用時不超過秒的概率,每位盲擰魔方愛好者用時是否超過秒相互獨立.那么在該興趣小組在全市范圍內(nèi)再次隨機(jī)抽取名愛好者進(jìn)行測試,其中用時不超過秒的人數(shù)最有可能(即概率最大)是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com