(本題滿分16分)

一走廊拐角下的橫截面如圖所示,已知內(nèi)壁FG和外壁BC都是半徑為1m的四分之一圓弧,AB,DC分別與圓弧BC相切于B、C兩點(diǎn),EF∥AB,GH∥CD,且兩組平行墻壁間的走廊寬度都是1m.

若水平放置的木棒MN的兩個(gè)端點(diǎn)M、N分別在外壁CD和AB上,且木棒與內(nèi)壁圓弧相切于點(diǎn)P。設(shè),試用表示木棒MN和長度。

若一根水平放置的木棒能通過該走廊拐角處,求木棒長度的最大值。

 (1)如圖,設(shè)圓弧所在的圓的圓心為,過點(diǎn)作垂線,垂足為點(diǎn),且交或其延長線與于,并連接,再過點(diǎn)作的垂線,垂足為

  中,因?yàn)?sub>,,

所以

因?yàn)?sub>與圓弧切于點(diǎn),所以

,因?yàn)?sub>,

所以,

①若在線段上,則

  中,,

因此.

②若在線段的延長線上,則,

  中,,

因此.

.………………………………………………………8分

(2)設(shè),則,

因此.因?yàn)?sub>,又,所以恒成立,

因此函數(shù)是減函數(shù),所以

答:一根水平放置的木棒若能通過該走廊拐角處,則其長度的最大值為

……………………………………………………………………………………16分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題滿分16分)兩個(gè)數(shù)列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù),、是常數(shù),且),對定義域內(nèi)任意、),恒有成立.

(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,

 .(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數(shù)

(1)判斷并證明上的單調(diào)性;

(2)若存在,使,則稱為函數(shù)的不動點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動點(diǎn),求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案