【題目】設(shè)函數(shù)\.

1)若處的切線垂直于y軸,求a的值;

2)若對(duì)于任意,都有恒成立,求a的取值范圍.

【答案】11;(2.

【解析】

1)先求得的導(dǎo)函數(shù),根據(jù)處的切線垂直于y軸可知在處的導(dǎo)數(shù)等于0,代入即可求得的值.

2)根據(jù)任意,都有恒成立,成立,代入可得.結(jié)合函數(shù)單調(diào)性,使得上滿足單調(diào)遞增且,即可得的取值范圍.再利用構(gòu)造函數(shù)法,證明時(shí)滿足單調(diào)遞增即可.

1,,,

處的切線垂直于y軸,

,,

2)對(duì)于任意,都有恒成立,則,所以,

,,,,所以,,

下面證明成立,

,,,

∴令,,,

∴函數(shù)上單調(diào)遞增,由,,

上單調(diào)遞增,.

當(dāng)時(shí),,,函數(shù)上單調(diào)遞增,

成立,

所以對(duì)于任意,都有恒成立.

當(dāng)時(shí),,而上單調(diào)遞增,

∴存在唯一的,使得,即,

時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,

,而

,

,得,

時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,

的極小值,而,當(dāng)時(shí),有小于0的函數(shù)值,也即是有小于0的函數(shù)值,這與對(duì)于任意,都有恒成立,相矛盾,當(dāng)時(shí),不滿足題意,

綜上可得,a的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某飛機(jī)失聯(lián),經(jīng)衛(wèi)星偵查,其最后出現(xiàn)在小島附近,現(xiàn)派出四艘搜救船,為方便聯(lián)絡(luò),船始終在以小島為圓心,100海里為半徑的圓上,船構(gòu)成正方形編隊(duì)展開搜索,小島在正方形編隊(duì)外(如圖).設(shè)小島的距離為,,船到小島的距離為.

(1)請(qǐng)分別求關(guān)于的函數(shù)關(guān)系式,并分別寫出定義域;

(2)當(dāng)兩艘船之間的距離是多少時(shí)搜救范圍最大(即最大)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的解析式;

2)在(1)的條件下,若是函數(shù)的零點(diǎn),且,求的值;

3)當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201913日嫦娥四號(hào)探測(cè)器成功實(shí)現(xiàn)人類歷史上首次月球背面軟著陸,我國(guó)航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個(gè)關(guān)鍵技術(shù)問題是地面與探測(cè)器的通訊聯(lián)系.為解決這個(gè)問題,發(fā)射了嫦娥四號(hào)中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點(diǎn)的軌道運(yùn)行.點(diǎn)是平衡點(diǎn),位于地月連線的延長(zhǎng)線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動(dòng)定律和萬有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計(jì)算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌餐飲公司準(zhǔn)備在10個(gè)規(guī)模相當(dāng)?shù)牡貐^(qū)開設(shè)加盟店,為合理安排各地區(qū)加盟店的個(gè)數(shù),先在其中5個(gè)地區(qū)試點(diǎn),得到試點(diǎn)地區(qū)加盟店個(gè)數(shù)分別為1,2,3,4,5時(shí),單店日平均營(yíng)業(yè)額(萬元)的數(shù)據(jù)如下:

加盟店個(gè)數(shù)(個(gè))

1

2

3

4

5

單店日平均營(yíng)業(yè)額(萬元)

10.9

10.2

9

7.8

7.1

(1)求單店日平均營(yíng)業(yè)額(萬元)與所在地區(qū)加盟店個(gè)數(shù)(個(gè))的線性回歸方程;

(2)根據(jù)試點(diǎn)調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個(gè)地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營(yíng)業(yè)額預(yù)計(jì)值總和不低于35萬元,求一個(gè)地區(qū)開設(shè)加盟店個(gè)數(shù)的所有可能取值;

(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個(gè)地區(qū)(加盟店都不少于2個(gè))中隨機(jī)選一個(gè)地區(qū)加入,求他們選取的地區(qū)相同的概率.

(參考數(shù)據(jù)及公式:,,線性回歸方程,其中,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某媒體為調(diào)查喜愛娛樂節(jié)目是否與觀眾性別有關(guān),隨機(jī)抽取了30名男性和30名女性觀眾,抽查結(jié)果用等高條形圖表示如圖:

(1)根據(jù)該等高條形圖,完成下列列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為喜歡娛樂節(jié)目與觀眾性別有關(guān)?

(2)從性觀眾中按喜歡節(jié)目與否,用分層抽樣的方法抽取5名做進(jìn)一步調(diào)查.從這5名中任選2名,求恰有1名喜歡節(jié)目和1名不喜歡節(jié)目的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù),其圖像是連續(xù)不斷的,且存在常數(shù)使得對(duì)任意實(shí)數(shù)x都成立,則稱是一個(gè)“k~特征函數(shù)”.則下列結(jié)論中正確命題序號(hào)為____________.

是一個(gè)“k~特征函數(shù)”;不是“k~特征函數(shù)”;

是常數(shù)函數(shù)中唯一的“k~特征函數(shù)”;④“~特征函數(shù)”至少有一個(gè)零點(diǎn);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線

(1)求曲線的直角坐標(biāo)方程;

(2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面四邊形ABCD中,ACBD的垂直平分線,垂足為E,AB中點(diǎn)為F,,沿BD折起,使C位置,如圖(2.

1)求證:;

2)當(dāng)平面平面ABD時(shí),求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案