【題目】已知函數(shù),且.
(1)求函數(shù)的極值;
(2)當時,證明:.
【答案】(1)當時,函數(shù)有極大值,當時,函數(shù)有極小值;(2)證明見解析.
【解析】
試題分析:(1)求極值,可先求得導數(shù),然后通過解不等式確定增區(qū)間,解不等式確定減區(qū)間,則可得極大值和極小值;(2)要證明此不等式,我們首先研究不等式左邊的函數(shù),記,求出其導數(shù),可知在上單調遞增,在上單調遞減,,這是時最小值,,這是時的最大值,因此要證明題中不等式,可分類,和分別證明.
試題解析:(1)依題意,,
故,
令,則或; 令,則,
故當時,函數(shù)有極大值,當時,函數(shù)有極小值.
(2) 由(1)知,令,
則,
可知在上單調遞增,在上單調遞減,令.
① 當時,,所以函數(shù)的圖象在圖象的上方.
② 當時,函數(shù)單調遞減,所以其最小值為最大值為2,而,所以函數(shù)的圖象也在圖象的上方.
綜上可知,當時,
科目:高中數(shù)學 來源: 題型:
【題目】某社區(qū)為豐富老年人的業(yè)余文化生活,要從老年合唱團的20位老年人中隨機抽取3位去參觀學習.請采用抽簽法進行抽樣,寫出抽樣過程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列關系:其中具有相關關系的是( )
①考試號與考生考試成績; ②勤能補拙;
③水稻產量與氣候; ④正方形的邊長與正方形的面積.
A.①②③B.①③④C.②③D.①③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知首項為的正項數(shù)列滿足,.
(1)若,,,求的取值范圍;
(2)設數(shù)列是公比為的等比數(shù)列,為數(shù)列前項的和.若,,求的取值范圍;
(3)若,,,()成等差數(shù)列,且,求正整數(shù)的最小值,以及取最小值時相應數(shù)列,,,的公差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學的父親決定今年夏天賣西瓜賺錢,根據(jù)去年6月份的數(shù)據(jù)統(tǒng)計連續(xù)五天內每天所賣西瓜的個數(shù)與溫度之間的關系如下表:
溫度 | 32 | 33 | 35 | 37 | 38 |
西瓜個數(shù) | 20 | 22 | 24 | 30 | 34 |
(1)求這五天內所賣西瓜個數(shù)的平均值和方差;
(2)求變量之間的線性回歸方程,并預測當溫度為時所賣西瓜的個數(shù).
附:,(精確到).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 已知函數(shù)(,)的圖像關于直線x=對稱,最大值為3,且圖像上相鄰兩個最高點的距離為.
(1)求的最小正周期;
(2)求函數(shù)的解析式;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ax- -5ln x,g(x)=x2-mx+4.
(1)若x=2是函數(shù)f(x)的極值點,求a的值;
(2)當a=2時,若x1∈(0,1),x2∈[1,2],都有f(x1)≥g(x2)成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:關于x的不等式ax>1(a>0,a≠1)的解集是{x|x<0},命題q:函數(shù)y=lg(ax2-x+a)的定義域為R,如果p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下圖,是長方形,平面平面,且是的中點.
(Ⅰ) 求證:平面;
(Ⅱ) 求三棱錐的體積;
(Ⅲ)若點是線段上的一點,且平面平面,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com