精英家教網 > 高中數學 > 題目詳情
2.如圖,已知橢圓的中心在原點,焦點在x軸上,離心率為$\frac{{\sqrt{3}}}{2}$,且經過點M(2,1).平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A,B兩個不同點
(1)求橢圓的方程;
(2)求m的取值范圍.

分析 (1)設出橢圓的方程,利用橢圓的離心率公式且經過點M(2,1),建立方程,求出a,b,即可求橢圓的方程;   
(2)由直線方程代入橢圓方程,利用根的判別式,即可求m的取值范圍.

解答 解:(1)設橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)
則e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,$\frac{4}{{a}^{2}}$+$\frac{1}{^{2}}$=1,c2=a2-b2
解得a2=8,b2=2,
∴橢圓方程為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1;
(2)∵直線l平行于OM,且在y軸上的截距為m,
又KOM=$\frac{1}{2}$,∴l(xiāng)的方程為:y=$\frac{1}{2}$x+m,
由直線方程代入橢圓方程x2+2mx+2m2-4=0,
∵直線l與橢圓交于A、B兩個不同點,
∴△=(2m)2-4(2m2-4)>0,
解得-2<m<2,且m≠0.

點評 本題考查橢圓的方程與性質,考查直線與橢圓的位置關系,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

20.無論k取任何實數,直線y=kx-k都經過一個定點,則該定點坐標為(1,0).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知隨機變量X服從正態(tài)分布N(1,σ2),且P(X≤0)=0.1,則P(1≤X≤2)=( 。
A.0.4B.0.1C.0.6D.0.9

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.在正四面體ABCD中,M,N分別是BC和DA的中點,則異面直線MN和CD所成角為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.設f(x)=xeax,g(x)=lnx+1
(Ⅰ)a=-1,f(x)與g(x)均在x0取到最大值,求x0及k的值;
(Ⅱ)a=k=1時,求證:f(x)≥g(x)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知圓C的參數方程為$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=\sqrt{3}+2sinθ}\end{array}\right.$(θ為參數),若P是圓C與x軸的交點,以原點O為極點,x軸的正半軸為極軸建立極坐標系,設過點P的圓C的切線為l
(Ⅰ)求直線l的極坐標方程
(Ⅱ)求圓C上到直線ρ(cosθ+$\sqrt{3}$sinθ)+6=0的距離最大的點的直角坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.成都西博會期間,某高校有12名志愿者參加服務工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,則開幕式當天不同的排班種數為(  )
A.$C_{12}^4C_8^4C_4^4$B.$A_{12}^4A_8^4A_4^4$
C.$\frac{{C_{12}^4C_8^4C_4^4}}{A_3^3}$D.$C_{12}^4C_8^4C_4^4A_3^3$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠DAB=$\frac{π}{3}$,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,E是AB中點.
(1)求證:直線AM∥平面PNC;
(2)求證:直線CD⊥平面PDE;
(3)求三棱錐C-PDA體積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)實軸長為2,且經過點(2,3),則雙曲線的漸近線方程為( 。
A.y=±$\frac{3}{2}$xB.y=±$\frac{{\sqrt{3}}}{2}$xC.y=±3xD.y=±$\sqrt{3}$x

查看答案和解析>>

同步練習冊答案