【題目】已知圓,圓心為,定點(diǎn), 為圓上一點(diǎn),線段上一點(diǎn)滿足,直線上一點(diǎn),滿足.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)為坐標(biāo)原點(diǎn), 是以為直徑的圓,直線與相切,并與軌跡交于不同的兩點(diǎn).當(dāng)且滿足時(shí),求面積的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:
(Ⅰ)由題意可得為線段中點(diǎn), 為線段的中垂線,則, 的軌跡是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,據(jù)此可求得點(diǎn)的軌跡的方程為.
(Ⅱ)直線與圓相切,則,聯(lián)立直線方程與橢圓方程可得.滿足題意時(shí),則,設(shè), ,由韋達(dá)定理結(jié)合弦長(zhǎng)公式可得,則△ABO的面積,換元令,結(jié)合二次函數(shù)的性質(zhì)可知,結(jié)合反比例函數(shù)的性質(zhì)可得面積的取值范圍為.
試題解析:
(Ⅰ),∴為線段中點(diǎn)
∵, ∴為線段的中垂線
∴
∵
∴由橢圓的定義可知的軌跡是以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,
設(shè)橢圓的標(biāo)準(zhǔn)方程為,
則, ,
∴,
∴點(diǎn)的軌跡的方程為.
(Ⅱ)∵圓與直線相切,
∴,即,
由,消去.
∵直線與橢圓交于兩個(gè)不同點(diǎn),
∴,
將代入上式,可得,
設(shè), ,
則, ,
∴ ,
∴
∴ ,
∵,解得.滿足.
又,
設(shè),則.
∴ ,
∴
故面積的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和最小值;
(2)若函數(shù)在上的最小值為,求的值;
(3)若,且對(duì)任意恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 為正四棱錐側(cè)棱上異于, 的一點(diǎn),給出下列結(jié)論:
①側(cè)面可以是正三角形.
②側(cè)面可以是直角三角形.
③側(cè)面上存在直線與平行.
④側(cè)面上存在直線與垂直.
其中,所有正確結(jié)論的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】旅行社為某旅行團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為元.旅行團(tuán)中的每個(gè)人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅行團(tuán)的人數(shù)不超過(guò)人時(shí),飛機(jī)票每張收費(fèi)元;若旅行團(tuán)的人數(shù)多于人時(shí),則予以?xún)?yōu)惠,每多人,每個(gè)人的機(jī)票費(fèi)減少元,但旅行團(tuán)的人數(shù)最多不超過(guò)人.設(shè)旅行團(tuán)的人數(shù)為人,飛機(jī)票價(jià)格元,旅行社的利潤(rùn)為元.
(1)寫(xiě)出飛機(jī)票價(jià)格元與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;
(2)當(dāng)旅行團(tuán)人數(shù)為多少時(shí),旅行社可獲得最大利潤(rùn)?求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,某重點(diǎn)高中數(shù)學(xué)教師對(duì)新入學(xué)的45名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時(shí)間不少于15小時(shí)的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績(jī)不足120分的占 ,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表:
分?jǐn)?shù)大于等于120分 | 分?jǐn)?shù)不足120分 | 合計(jì) | |
周做題時(shí)間不少于15小時(shí) | 4 | 19 | |
周做題時(shí)間不足15小時(shí) | |||
合計(jì) | 45 |
(Ⅰ)請(qǐng)完成上面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績(jī)與學(xué)生自主學(xué)習(xí)時(shí)間有關(guān)”;
(Ⅱ)( i)按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時(shí)間不足15小時(shí)的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
( ii)若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機(jī)抽取20人,求這些人中周做題時(shí)間不少于15小時(shí)的人數(shù)的期望和方差.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的空間幾何體中,四邊形是邊長(zhǎng)為2的正方形, 平面, , , , .
(1)求證:平面平面;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com