已知θ∈R時(shí),不等式m2-(1+4sin2θ)m+4-6cos2θ≥0恒成立,則實(shí)數(shù)m的取值范圍是(  )
A、m≥4或m≤1
B、m≥4或m≤-1
C、m≥2或m≤1
D、m≥2或m≤-1
考點(diǎn):函數(shù)恒成立問(wèn)題
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:把給出的不等式左邊化余弦為正弦,整理為關(guān)于sin2θ的一次不等式,然后由θ∈R時(shí),不等式m2-(1+4sin2θ)m+4-6cos2θ≥0恒成立得不等式組
m2-m-2≥0
6-4m+m2-m-2≥0
,求解不等式組得答案.
解答: 解:由m2-(1+4sin2θ)m+4-6cos2θ≥0,得
m2-m-4msin2θ+4-6(1-sin2θ)≥0,
即(6-4m)sin2θ+(m2-m-2)≥0,
要使θ∈R時(shí),不等式m2-(1+4sin2θ)m+4-6cos2θ≥0恒成立,
上式看作關(guān)于sin2θ的一次不等式,
m2-m-2≥0
6-4m+m2-m-2≥0
,
m2-m-2≥0
m2-5m+4≥0
,
解得:m≥4或m≤-1.
故選:B.
點(diǎn)評(píng):本題考查了函數(shù)恒成立問(wèn)題,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,更換主元是解答該題的關(guān)鍵,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:an+1=
an(an2+3)
3an2+1
,a1=2,bn=
an-1
an+1

(1)求{bn}的通項(xiàng)公式;
(2)求證:當(dāng)n≥3時(shí),b1+b2+…+bn
241
648

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
m
x+1
+nlnx(m,n為常數(shù)),在x=1處的切線為x+y-2=0.
(1)求y=f(x)的單調(diào)區(qū)間;
(2)若任意實(shí)數(shù)x∈[
1
e
,1],使得對(duì)任意的t∈[1,2]上恒有f(x)≥t3-t2-2at成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:mx+4y-m-2=0,l2:x+my-m=0,實(shí)數(shù)m為何值時(shí),l1與l2
(1)相交;
(2)平行;
(3)重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)2log
2
lg2
+lg5lg2-lg2的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
25
+
y2
16
=1的焦點(diǎn)為F1和F2,P為橢圓上一點(diǎn),若|PF1|=2,則|PF2|=( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列事實(shí):|x|+|y|=1的不同整數(shù)解(x,y)的個(gè)數(shù)為4.|x|+|y|=2的不同整數(shù)解(x,y)的個(gè)數(shù)為8,|x|+|y|=3的不同整數(shù)解(x,y)的個(gè)數(shù)為12…;則|x|+|y|=20的不同整數(shù)解(x,y)的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和,Sn=n2+2n.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)記Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用輾轉(zhuǎn)相除法或更相減損術(shù)求兩個(gè)數(shù)243,135的最大公約數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案