經(jīng)過(guò)點(diǎn)A(-
3
,3),且傾斜角為直線
3
x+y+1=0的傾斜角的一半的直線方程
 
考點(diǎn):直線的點(diǎn)斜式方程
專題:直線與圓
分析:利用斜率與傾斜角的關(guān)系、直線的點(diǎn)斜式方程即可得出.
解答: 解:由直線
3
x+y+1=0可得y=-
3
x-1,設(shè)傾斜角為θ.
則斜率k=-
3
,∴tanθ=-
3

∴θ=120°.
∴要求的直線傾斜角為60°.
其斜率為
3

∴要求的直線方程為:y-3=
3
(x+
3
)
,
化為
3
x-y+6=0

故答案為:
3
x-y+6=0
點(diǎn)評(píng):本題考查了斜率與傾斜角的關(guān)系、直線的點(diǎn)斜式方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y∈(0,1),則
x2+y2
+
x2+y2-2y+1
+
x2+y2-2x+1
+
x2+y2-2x-2y+2
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x=log2014
1
4
,y=2014
1
2
,z=
4028
-
2014
,由x,y,z的大小關(guān)系為( 。
A、y<z<x
B、z<x<y
C、x<y<z
D、x<z<y

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(a-1)x在R上單調(diào)遞增,則a范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≥f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:
①f(0)=0;②f(
x
3
)=
1
2
f(x)f(
x
3
)=
1
2
f(x);③f(1-x)=1-f(x),
則f(
1
6
)=
 
;f(
1
4
)+f(
1
7
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC的三個(gè)內(nèi)角滿足sinA:sinB:sinC=5:11:13,則( 。
A、sinA=5,sinB=11,sinC=13
B、a=5,b=11,c=13
C、A:B:C=5:11:13
D、a:b:c=5:11:13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線3x+4y-3=0與直線6x+my+14=0平行,求這兩條平行線之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(z)=1-
.
z
,z1=2+3i,z2=2+i,則|f(z1+z2)|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b,c為正實(shí)數(shù)且滿足a+2b+3c=6,
(Ⅰ)求abc的最大值;
(Ⅱ)求
a+1
+
2b+1
+
3c+1
的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案