分析 (1)根據數列{an}的通項公式,即可寫出它們的前5項;
(2)根據數列{an}的首項與遞推公式,即可寫出它們的前5項.
解答 解:(1)數列{an}中,an=(-1)n(n2+1),
所以a1=-1×(12+1)=-2,
a2=(-1)2×(22+1)=5,
a3=(-1)3×(32+1)=-10,
a4=(-1)4×(42+1)=17,
a5=(-1)5×(52+1)=-26;
(2)數列{an}中,a1=1,an=1+$\frac{1}{{{a_{n-1}}}}$(n>1);
所以a2=1+$\frac{1}{{a}_{1}}$=1+1=2,
a3=1+$\frac{1}{{a}_{2}}$=1+$\frac{1}{2}$=$\frac{3}{2}$,
a4=1+$\frac{1}{{a}_{3}}$=1+$\frac{2}{3}$=$\frac{5}{3}$,
a5=1+$\frac{1}{{a}_{4}}$=1+$\frac{3}{5}$=$\frac{8}{5}$.
點評 本題考查了根據數列的通項公式或遞推公式寫出對應項的問題,是基礎題目.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | -7 | C. | $\frac{1}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | 2 | D. | 2015 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com