【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車被稱為新四大發(fā)明之一,短時(shí)間內(nèi)就風(fēng)靡全國,帶給人們新的出行體驗(yàn),某共享單車運(yùn)營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個(gè)月的市場占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如表:

月份

月份代碼x

1

2

3

4

5

6

y

11

13

16

15

20

21

請用相關(guān)系數(shù)說明能否用線性回歸模型擬合y與月份代碼x之間的關(guān)系,如果能,請計(jì)算出y關(guān)于x的線性回歸方程,并預(yù)測該公司201812月的市場占有率如果不能,請說明理由.

根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴(kuò)大市場,現(xiàn)有采購成本分別為1000輛和800輛的A,B兩款車型,報(bào)廢年限各不相同考慮公司的經(jīng)濟(jì)效益,該公司決定對兩款單車進(jìn)行科學(xué)模擬測試,得到兩款單車使用壽命頻數(shù)表如表:

報(bào)廢年限

車型

1

2

3

4

總計(jì)

A

10

30

40

20

100

B

15

40

35

10

100

經(jīng)測算,平均每輛單車每年可以為公司帶來收入500不考慮除采購成本以外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,用頻率估計(jì)每輛車使用壽命的概率,分別以這100輛單車所產(chǎn)生的平均利潤作為決策依據(jù),如果你是該公司的負(fù)責(zé)人,會(huì)選擇釆購哪款車型?

參考數(shù)據(jù):,

參考公式:相關(guān)系數(shù)

回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為:,

【答案】(1), 201812月的市場占有率是 (2) 選擇釆購B款車型.

【解析】

1)求出相關(guān)系數(shù),判斷即可,求出回歸方程的系數(shù),求出回歸方程代入的值,判斷即可;
2)分別求出的平均利潤,判斷即可.

,

,

故兩變量之間有較強(qiáng)的相關(guān)關(guān)系,

故可用線性回歸模型擬合y與月份代碼x之間的關(guān)系,

故回歸方程是,

時(shí),

201812月的市場占有率是;

用頻率估計(jì)概率,

100A款單車的平均利率為:

100B款車的平均利潤為:

,

故會(huì)選擇釆購B款車型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)(其中是自然對數(shù)的底數(shù),).

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)若當(dāng)時(shí)都有成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,點(diǎn)P是側(cè)棱C1C的中點(diǎn).

1)求證:AC1∥平面PBD;

2)求證:BDA1P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某海濱養(yǎng)殖場有一塊可用水城,該養(yǎng)殖場用隔離網(wǎng)把該水域分為兩個(gè)部分,其中百米,現(xiàn)計(jì)劃過處再修建一條直線型隔離網(wǎng),其端點(diǎn)分別在上,記為

1)若要使得所圍區(qū)域面積不大于平方百米,求的取值范圍:

2)若要在區(qū)域內(nèi)養(yǎng)殖魚類甲,區(qū)域內(nèi)養(yǎng)殖魚類乙,已知魚類甲的養(yǎng)殖成本是萬元/平方百米,魚類乙的養(yǎng)殖成本是萬元/平方百米.試確定的值,使得養(yǎng)殖成本最小,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cx22pyp0)的焦點(diǎn)為(0,1

1)求拋物線C的方程;

2)設(shè)直線l2ykx+m與拋物線C有唯一公共點(diǎn)P,且與直線l1y=﹣1相交于點(diǎn)Q,試問,在坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使得以PQ為直徑的圓恒過點(diǎn)N?若存在,求出點(diǎn)N的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.

1)求橢圓的方程;

2M,N是橢圓上關(guān)于x軸對稱的兩點(diǎn),P是橢圓上不同于M,N的一點(diǎn),直線PM,PNx軸于DxD0ExE,0),證明:xDxE為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國北京世界園藝博覽會(huì)于2019429日至107日在北京市延慶區(qū)舉行.組委會(huì)為方便游客游園,特推出“導(dǎo)引員”服務(wù).“導(dǎo)引員”的日工資方案如下:

方案:由三部分組成

(表一)

底薪

150

工作時(shí)間

6/小時(shí)

行走路程

11/公里

方案:由兩部分組成:(1)根據(jù)工作時(shí)間20/小時(shí)計(jì)費(fèi);(2)行走路程不超過4公里時(shí),按10/公里計(jì)費(fèi);超過4公里時(shí),超出部分按15/公里計(jì)費(fèi).已知“導(dǎo)引員”每天上班8小時(shí),由于各種因素,“導(dǎo)引員”每天行走的路程是一個(gè)隨機(jī)變量.試運(yùn)行期間,組委會(huì)對某天100名“導(dǎo)引員”的行走路程述行了統(tǒng)計(jì),為了計(jì)算方便對日行走路程進(jìn)行取整處理.例如行走1.8公里按1公里計(jì)算,行走5.7公里按5公里計(jì)算.如表所示:

(表二)

行走路程

(公里)

人數(shù)

5

10

15

45

25

(Ⅰ)分別寫出兩種方案的日工資(單位:元)與日行走路程(單位:公里)的函數(shù)關(guān)系

(Ⅱ)①現(xiàn)按照分層抽樣的方工式從共抽取5人組成愛心服務(wù)隊(duì),再從這5人中抽取3人當(dāng)小紅帽,求小紅帽中恰有1人來自的概率;

②“導(dǎo)引員”小張因?yàn)樯眢w原因每天只能行走12公里,如果僅從日工資的角度考慮,請你幫小張選擇使用哪種方案會(huì)使他的日工資更高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》規(guī)定,交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通7座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是保費(fèi)浮動(dòng)機(jī)制,保費(fèi)與上一、二、三個(gè)年度車輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:

某機(jī)構(gòu)為了研究某一品牌普通7座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號私家車在下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)某家庭有一輛該品牌車且車齡剛滿三年,記為該車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列;

(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基準(zhǔn)保費(fèi)的車輛記為事故車.

①若該銷售商購進(jìn)三輛車(車齡已滿三年)該品牌二手車,求這三輛車中至少有2輛事故車的概率;

②假設(shè)購進(jìn)一輛事故車虧損4000元,一輛非事故車盈利8000元.若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求其獲得利潤的期望值.

查看答案和解析>>

同步練習(xí)冊答案