在△ABC中,如果a=
,b=2,c=1,那么A的值是
.
考點(diǎn):余弦定理
專(zhuān)題:解三角形
分析:利用余弦定理表示出cosA,把三邊長(zhǎng)代入求出cosA的值,即可確定出A的度數(shù).
解答:
解:∵在△ABC中,a=
,b=2,c=1,
∴cosA=
=
=
,
則A=
,
故答案為:
點(diǎn)評(píng):此題考查了余弦定理,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)常數(shù)a>0,則
(1)函數(shù)f(x)=
的值域?yàn)?div id="8y0suxq" class='quizPutTag' contenteditable='true'>
;
(2)若函數(shù)f(x)=
為奇函數(shù),則a=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
定義在(-1,1)上的函數(shù)f(x)=-3x+sinx,如果f(1-a)+f(1-a
2)>0,則實(shí)數(shù)a的取值范圍為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=x
2+
,則f(-1)=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)函數(shù)f(x)=ln(2x+3)+x2.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)求f(x)在區(qū)間[0,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知M={-3,-2,0,1,2},N={-2,-1,1,2},則M∩N=( 。
A、{-2,1,2 } |
B、{-3,-2,-1,0,1,2} |
C、M |
D、N |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
利用已學(xué)知識(shí)證明:
(1)sinθ+sinφ=2sin
cos
;
(2)已知△ABC的外接圓的半徑為2,內(nèi)角A,B,C滿足sin2A+sin(A-B+C)=sin(C-A-B)+
,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知a=π
,b=log
π3,c=ln(
-1),d=log
π,則a,b,c,d的大小關(guān)系是( 。
A、a<b<c<d |
B、c<d<b<a |
C、d<c<b<a |
D、d<b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
在三棱柱ABC-A
1B
1C
1中,M,N分別是BB
1,AC中點(diǎn),設(shè)
=
,
=
,
=
,則
=( 。
查看答案和解析>>