數(shù)列{}的前n項和為,
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項和;
(Ⅲ)若,數(shù)列的前項和,證明:

(Ⅰ)(Ⅱ)(Ⅲ)詳見解析

解析試題分析:(Ⅰ) 由,令可求,時,利用可得之間的遞推關(guān)系,構(gòu)造等可證等比數(shù)列;(Ⅱ)  由(Ⅰ)可求,利用錯位相減法可求數(shù)列的和;(Ⅲ)由(Ⅱ)進(jìn)而可求,利用)進(jìn)行不等式放縮,求數(shù)列{}的和即可求證.
試題解析:(Ⅰ)因為,
所以  ① 當(dāng)時,,則,             (1分)
② 當(dāng)時,,       (2分)
所以,即,
所以,而,             (3分)
所以數(shù)列是首項為,公比為的等比數(shù)列,所以.   (4分)
(Ⅱ)由(1)得
所以 ①,
,               (5分)
②-①得:,                    (7分)
                 .    (9分)
(Ⅲ)由(Ⅰ)知                                      (10分)
(1)當(dāng)時,成立;                      (11分)
(2)當(dāng)時,,     (13分)
所以.    (14分)
(本題放縮方法不唯一,請酌情給分)
考點: 1.遞推關(guān)系;2.等比數(shù)列的概念;3.數(shù)列求和和不等式放縮.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩大超市同時開業(yè),第一年的全年銷售額均為a萬元,由于經(jīng)營方式不同,甲超市前n年的總銷售額為(n2-n+2)萬元,乙超市第n年的銷售額比前一年銷售額多a萬元.
(1)設(shè)甲、乙兩超市第n年的銷售額分別為an、bn,求an、bn的表達(dá)式;
(2)若其中某一超市的年銷售額不足另一超市的年銷售額的50%,則該超市將被另一超市收購,判斷哪一超市有可能被收購?如果有這種情況,將會出現(xiàn)在第幾年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項和為,
(1)求;
(2)求數(shù)列的通項
(3)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和滿足,又.
(1)求實數(shù)k的值;
(2)求證:數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)正項數(shù)列an為等比數(shù)列,它的前n項和為Sn,a1=1,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)已知是首項為1,公差為2的等差數(shù)列,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,,若函數(shù),在點處切線過點
(1)求證:數(shù)列為等比數(shù)列;
(2)求數(shù)列的通項公式和前n項和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項均為正數(shù)的數(shù)列的前項和為,數(shù)列的前項和為,且.
⑴證明:數(shù)列是等比數(shù)列,并寫出通項公式;
⑵若恒成立,求的最小值;
⑶若成等差數(shù)列,求正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知單調(diào)遞增的等比數(shù)列滿足:,且、的等差中項.
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項和為Tn.求滿足不等式>2 010的n的最小值.

查看答案和解析>>

同步練習(xí)冊答案