設(shè),.
(1)請寫出的表達(dá)式(不需證明);
(2)求的極小值;
(3)設(shè)的最大值為,的最小值為,求的最小值.
(1);(2);(3).
解析試題分析: (1)依次求出,,,
由此便可猜測出的表達(dá)式.
(2)要求的極小值,先求出,
由,可得的單調(diào)區(qū)間和極值.
(3)配方法可以求出.
由(2)得:,所以.
問題轉(zhuǎn)化為求的最小值.這又有兩種方法:
法一、構(gòu)造函數(shù),通過求導(dǎo)來求它的最小值;法二、通過研究這個數(shù)列的單調(diào)性來求它的最小值.
試題解析:(1)根據(jù),,,
猜測出的表達(dá)式. 4分
(2)求導(dǎo)得:,
因為時,;當(dāng)時,.
所以,當(dāng)時,取得極小值,
即. 8分
(3)將配方得,
所以.
又因為,所以,10分
問題轉(zhuǎn)化為求的最小值.
解法1(構(gòu)造函數(shù)):
令,
則,又在區(qū)間上單調(diào)遞增,
所以.
又因為,,
所以存在使得.
又有在區(qū)間上單調(diào)遞增,所以時,;
當(dāng)時,,
即在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
所以.
又由于,,,
所以當(dāng)時,取得最小值.
解法2(利用數(shù)列的單調(diào)性):
因為,
當(dāng)時,,
所以,所以.
又因為,.
所以當(dāng)時,取得最小值.14分
考點:1、歸納推理;2、導(dǎo)數(shù)的應(yīng)用;3、函數(shù)的最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
某醫(yī)藥研究所開發(fā)一種新藥,據(jù)監(jiān)測,如果成人按規(guī)定劑量服用該藥,服藥后每毫升血液中的含藥量與服藥后的時間之間近似滿足如圖所示的曲線.其中是線段,曲線段是函數(shù)是常數(shù)的圖象.
(1)寫出服藥后每毫升血液中含藥量關(guān)于時間的函數(shù)關(guān)系式;
(2)據(jù)測定:每毫升血液中含藥量不少于時治療有效,假若某病人第一次服藥為早上,為保持療效,第二次服藥最遲是當(dāng)天幾點鐘?
(3)若按(2)中的最遲時間服用第二次藥,則第二次服藥后再過,該病人每毫升血液中含藥量為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,且兩函數(shù)定義域均為,
(1).畫函數(shù)在定義域內(nèi)的圖像,并求值域;(5分)
(2).求函數(shù)的值域.(5分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知(a是常數(shù),a∈R)
(Ⅰ)當(dāng)a=1時求不等式的解集;
(Ⅱ)如果函數(shù)恰有兩個不同的零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到輛/千米時,造成堵塞,此時車流速度為;當(dāng)時,車流速度為千米/小時.研究表明:當(dāng)時,車流速度是車流密度的一次函數(shù).
(1)當(dāng)時,求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)可以達(dá)到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知一企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設(shè)該企業(yè)年內(nèi)共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)品(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
(注:年利潤=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有實數(shù)根,求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價格為4元/千克時,每日可銷售出該商品5千克;銷售價格為4.5元/千克時,每日可銷售出該商品2.35千克.
(1)求的解析式;
(2)若該商品的成本為2元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若f(x)的定義域為[a,b],值域為[a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
①設(shè)g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值,否則,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com