給定下列四個命題:
①命題“?x∈R,x2-x>0”的否定是“對?x∈R,x2-x<0”;
②若p:0<x<2是q:a-1<x≤a的必要不充分條件,則a的取值范圍是[1,2];
③冪函數(shù)f(x)=(m2-m-1)xm2+m-3在x=0處有定義,則實數(shù)m的值為2;
④已知向量
a
=(3,-4)
,
b
=(2,1)
,則向量
a
在向量
b
方向上的投影是
2
5

其中正確命題的序號是
 
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:①命題“?x∈R, x2-x>0”的否定是“對?x∈R, x2-x≤0”,即可判斷出.
②由p是q的必要不充分條件,可得集合{x|a-1<x≤a}
?
{x|0<x<2},可得
a-1≥0
a<2
,解出即可判斷出;
③由函數(shù)f(x)為冪函數(shù),可得m2-m-1=1,解得m=-1或m=2,代入驗證即可得出;
④向量
a
在向量
b
方向上的投影是
a
b
|
b
|
,計算出即可.
解答: 解:①命題“?x∈R, x2-x>0”的否定是“對?x∈R, x2-x≤0”,故①不正確.
②∵p是q的必要不充分條件,∴集合{x|a-1<x≤a}
?
{x|0<x<2},∴
a-1≥0
a<2
⇒1≤a<2
.故②不正確.
③∵函數(shù)f(x)為冪函數(shù),∴m2-m-1=1,解得m=-1或m=2,當(dāng)m=-1時f(x)=x-3=
1
x3
在x=0處沒有定義,當(dāng)m=2時f(x)=x3在x=0處有定義,
∴m=2,故命題③正確;
④向量
a
在向量
b
方向上的投影是|
a
|cos<
a,
 
b>
=
a
b
|
b
|
=
2
5
=
2
5
5
,故④錯誤.
故答案為:③.
點評:本題考查了簡易邏輯的判定、函數(shù)的性質(zhì)、向量的投影,考查了推理能力與計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司開發(fā)一新產(chǎn)品有甲、乙兩種型號,現(xiàn)分別對這兩種型號產(chǎn)品進行質(zhì)量檢測,從它們的檢測數(shù)據(jù)中隨機抽取8次(數(shù)值越大產(chǎn)品質(zhì)量越好),記錄如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5
(Ⅰ)畫出甲、乙兩產(chǎn)品數(shù)據(jù)的莖葉圖;
(Ⅱ)現(xiàn)要從甲、乙中選一種型號產(chǎn)品投入生產(chǎn),從統(tǒng)計學(xué)角度,你認(rèn)為生產(chǎn)哪種型號產(chǎn)品合適?簡單說明理由;
(Ⅲ) 若將頻率視為概率,對產(chǎn)品乙今后的三次檢測數(shù)據(jù)進行預(yù)測,記這三次數(shù)據(jù)中不低于8.5分的次數(shù)為ξ,求ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
x
+1)6(
x
-1)4
的展開式中x的系數(shù)是( 。
A、-3B、3C、-4D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)f(x)滿足f(x+1)=2f(x),且當(dāng)x∈(0,1]時,f(x)=x2-x,則當(dāng)x∈(-1,0]時,f(x)的值域為( 。
A、[-
1
8
,0
]
B、[-
1
4
,0
]
C、[-
1
8
,-
1
4
]
D、[0,
1
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小強參加一次測試,共有三道必答題,他是否答對每題互不影響.已知他只答對第一題的概率為0.08,只答對第一題和第二題的概率為0.1,至少答對一題的概率為0.88,用X表示小強答對題的數(shù)目.
(Ⅰ)求小強答對第一題的概率;
(Ⅱ)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>1且實數(shù)x,y滿足|x|+|y|≤1,則z=ax+y的最大值是( 。
A、1
B、a+1
C、a
D、
a+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示空間四邊形ABCD,連接AC、BD,設(shè)M、G分別是BC、CD的中點,則
MG
-
AB
+
AD
等于( 。
A、
3
2
DB
B、3 
MG
C、3 
GM
D、2 
MG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|log2(x-a)<2}
(1)a=2,求集合A         
(2)若2∉A,3∈A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列命題的真假:
(1)如果一個冪函數(shù)不是偶函數(shù),那么它一定是奇函數(shù);
(2)冪函數(shù)的圖象不可能在第四象限;
(3)冪函數(shù)的圖象與坐標(biāo)軸最多只有一個交點;
(4)當(dāng)a=0時,函數(shù)y=xa的圖象是一條直線;
(5)若f(x)=x4是奇函數(shù),則他在定義域內(nèi)單調(diào)遞增;
(6)如果一個冪函數(shù)是奇函數(shù),則它的圖象一定經(jīng)過原點;
(7)任何兩個冪函數(shù)的圖象最多有三個交點;
(8)指數(shù)函數(shù)圖象都經(jīng)過(0,1)點;
(9)指數(shù)函數(shù)y=ax(a>0且a≠1)中,若a>1,則x<0時,y>1;
(10)指數(shù)函數(shù)y=4x與y=-4x關(guān)于y軸對稱;
(11)函數(shù)f(x)=
1
2x+1
在(-∞,+∞)上單調(diào)遞減無最大值;
(12)若0<a<1,b<-1,則函數(shù)f(x)=ax+b的圖象不經(jīng)過第一象限.

查看答案和解析>>

同步練習(xí)冊答案