【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,圓C的極坐標方程為ρ=4cos θ,直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標方程及弦AB的長;
(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.
【答案】(1)(x-2)2+y2=4;;(2)2+.
【解析】
(1)圓C的極坐標方程化為直角坐標方程,直線l的參數(shù)方程代入圓C的的直角坐標方程,利用直線參數(shù)方程的幾何意義,即可求解;
(2)要求△ABP的面積的最大值,只需求出點P到直線l距離的最大值,將點P坐標設為圓方程的參數(shù)形式,利用點到直線的距離公式以及三角函數(shù)的有界性,即可求解.
(1)由ρ=4cos θ得ρ2=4ρcos θ,所以x2+y2-4x=0,
所以圓C的直角坐標方程為(x-2)2+y2=4.
設A,B對應的參數(shù)分別為t1,t2.
將直線l的參數(shù)方程代入圓C:
(x-2)2+y2=4,并整理得t2+t=0,
解得t1=0,t2=-.
所以直線l被圓C截得的弦AB的長為|t1-t2|=.
(2)由題意得,直線l的普通方程為x-y-4=0.
圓C的參數(shù)方程為 (θ為參數(shù)),
可設圓C上的動點P(2+2cos θ,2sin θ),
則點P到直線l的距離
d=,
當=-1時,d取得最大值,且d的最大值為2+.
所以S△ABP=××(2+)=2+,
即△ABP的面積的最大值為2+.
科目:高中數(shù)學 來源: 題型:
【題目】千百年來,我國勞動人民在生產(chǎn)實踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的“看云識天氣”的經(jīng)驗,并將這些經(jīng)驗編成諺語,如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學為了驗證“日落云里走,雨在半夜后”,觀察了所在地區(qū)A的100天日落和夜晚天氣,得到如下列聯(lián)表:
夜晚天氣 日落云里走 | 下雨 | 未下雨 |
出現(xiàn) | 25 | 5 |
未出現(xiàn) | 25 | 45 |
臨界值表 | ||||
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
并計算得到,下列小波對地區(qū)A天氣判斷不正確的是( )
A.夜晚下雨的概率約為
B.未出現(xiàn)“日落云里走”夜晚下雨的概率約為
C.有的把握認為“‘日落云里走’是否出現(xiàn)”與“當晚是否下雨”有關
D.出現(xiàn)“日落云里走”,有的把握認為夜晚會下雨
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若存在與函數(shù),的圖象都相切的直線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的部分圖像如圖所示.
(1)求的解析式;
(2)求的單調(diào)遞減區(qū)間;
(3)不畫圖,說明函數(shù)的圖像經(jīng)過怎樣的變換可得到的圖像.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了讓貧困地區(qū)的孩子們過一個溫暖的冬天,某校陽光志愿者社團組織“這個冬天不再冷”冬衣募捐活動,共有50名志愿者參與.志愿者的工作內(nèi)容有兩項:①到各班做宣傳,倡議同學們積極捐獻冬衣;②整理、打包募捐上來的衣物.每位志愿者根據(jù)自身實際情況,只參與其中的某一項工作.相關統(tǒng)計數(shù)據(jù)如下表所示:
(1)如果用分層抽樣的方法從參與兩項工作的志愿者中抽取5人,再從這5人中選2人,那么“至少有1人是參與班級宣傳的志愿者”的概率是多少?
(2)若參與班級宣傳的志愿者中有12名男生,8名女生,從中選出2名志愿者,用表示所選志愿者中的女生人數(shù),寫出隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三棱錐中, 互相垂直, , 是線段上一動點,若直線與平面所成角的正切的最大值是,則三棱錐的外接球的表面積是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國委員會第二次會議,分別于2019年3月5日和3月3日在北京召開為了了解哪些人更關注“兩會”,某機構(gòu)隨機抽取了年齡在15~75歲之間的200人進行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,把年齡落在區(qū)間和內(nèi)的人分別稱為“青少年人”和“中老年人”經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)之比為.其中“青少年人”中有40人關注“兩會”,“中老年人”中關注“兩會”和不關注“兩會”的人數(shù)之比是.
(1)求圖中的值;現(xiàn)釆用分層抽樣在和中隨機抽取8名代表,從8人中仼選2人,求2人中至少有1個是“中老年人”的概率是多少?
(2)根據(jù)已知條件,完成下面的列聯(lián)表,并根據(jù)此統(tǒng)計結(jié)果判斷:能否有的把握認為“中老年人”比“青少年人”更加關注“兩會”?
關注 | 不關注 | 合計 | |
青少年人 | |||
中老年人 | |||
合計 |
參考數(shù)據(jù)及公式:
0.150 | 0.100 | 0.050 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內(nèi)有兩個不同的極值點.
(1)求實數(shù)a的取值范圍;
(2)設兩個極值點分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com