(本小題共12分)已知f(x)=m(x-2m)(x+m+3),g(x)=-2,若同時(shí)滿足條件:

x∈R,f(x) <0或g(x) <0;②x∈(﹣∝, ﹣4),f(x)g(x) <0。求m的取值范圍。

 

【答案】

(一)此滿足條件①的的取值范圍為

(二)綜上所述滿足①②兩個(gè)條件的的取值范圍為

【解析】

試題分析:根據(jù)已知題意得到時(shí)不能保證對(duì)<0或<0成立.

那么只有m<0時(shí),則根據(jù)二次函數(shù)圖像與指數(shù)函數(shù)圖像的位置關(guān)系,在滿足前提條件下的,可知參數(shù)m的范圍。

解:(一)由題意可知,時(shí)不能保證對(duì)<0或<0成立.

⑴當(dāng)時(shí),此時(shí)顯然滿足條件①;

⑵當(dāng)-1<<0時(shí),要使其滿足條件①,則需-1<<0且<1,解得-1<<0;

⑶當(dāng)<-1時(shí),,要使其滿足條件①,則需<-1且<1,

解得-4<<-1.  因此滿足條件①的的取值范圍為

(二)在滿足條件①的前提下,再探討滿足條件②的取值范圍。

⑴當(dāng)時(shí),在上,均小于0,不合題意;

⑵當(dāng)<-1時(shí),則需<-4,即<-2,所以-4<<-2.

⑶當(dāng)-1<<0時(shí),則需<-4,即>1,此時(shí)無(wú)解。

綜上所述滿足①②兩個(gè)條件的的取值范圍為

考點(diǎn):本題主要是考查二次函數(shù)圖像與指數(shù)函數(shù)圖像的運(yùn)用。

點(diǎn)評(píng):解決該試題的關(guān)鍵是理解兩個(gè)條件,翻譯為圖像中的二次函數(shù)中的兩個(gè)根 的位置,以及對(duì)于m的分類(lèi)討論思想的運(yùn)用。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆甘肅省高三第二次檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共12分)

已知函數(shù)f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)求y=f(x)的極值點(diǎn)(即函數(shù)取到極值時(shí)點(diǎn)的橫坐標(biāo)).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第四次模擬考試文科數(shù)學(xué)試卷 題型:解答題

(本小題共12分)已知曲線上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-,0)和F2(,0)的距離之和為4.

(1)求曲線的方程;

(2)設(shè)過(guò)(0,-2)的直線與曲線交于C、D兩點(diǎn),且為坐標(biāo)原點(diǎn)),求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

(本小題共12分)

已知函數(shù)

(Ⅰ)求的最小正周期和最小值;

(Ⅱ)已知,,求證:.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(本小題共12分)

已知函數(shù)的最小值不小于, 且.

(1)求函數(shù)的解析式;

(2)函數(shù)的最小值為實(shí)數(shù)的函數(shù),求函數(shù)的解析式.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(本小題共12分)

已知集合,集合

(1)求集合A;

(2)若,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案