分析 求出曲線$y=\frac{1}{x}$在點(diǎn)(1,1)處的切線的斜率,求出函數(shù)y=ex的導(dǎo)函數(shù),設(shè)出P的坐標(biāo)(x0,y0),得到曲線y=ex在x=x0處的導(dǎo)數(shù),由兩直線垂直與斜率的關(guān)系求得x0,進(jìn)一步求得P的坐標(biāo).
解答 解:由$y=\frac{1}{x}$,得$y′=-\frac{1}{{x}^{2}}$,
∴y′|x=1=-1,
由y=ex,得y′=ex,設(shè)P(x0,y0),
則$y′{|}_{x={x}_{0}}={e}^{{x}_{0}}$,
由題意可得:${e}^{{x}_{0}}=1$,∴x0=0.
∴y=e0=1.
則P點(diǎn)的坐標(biāo)為(0,1).
故答案為:(0,1).
點(diǎn)評 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,考查了兩直線垂直與斜率的關(guān)系,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0,\frac{1}{2}})$ | B. | $({\frac{1}{2},1})$ | C. | $({1,\frac{3}{2}})$ | D. | $({\frac{3}{2},2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 7 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A(-1,+∞) | B. | (-1,2)∪(2,+∞) | C. | (-1,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(0,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,1) | D. | (-1,0)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,1] | C. | (3,+∞) | D. | (-∞,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{3}$個(gè)單位 | B. | 向右平移$\frac{π}{6}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{12}$個(gè)單位 | D. | 向右平移$\frac{π}{12}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P=Q | B. | Q?P | C. | P∩Q={2,4} | D. | P∩Q={(2,4)} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com