精英家教網 > 高中數學 > 題目詳情

已知圓與y軸相切,圓心在直線l1:x-3y=0上,且在直線l2:x-y=0上截得的弦長為,求該圓的方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

31、已知圓與y軸相切,圓心在直線x-3y=0,且這個圓經過點A(6,1),求該圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•揭陽二模)如圖已知拋物線C:y2=2px(p>0)的準線為l,焦點為F,圓M的圓心在x軸的正半軸上,且與y軸相切.過原點作傾斜角為
π
3
的直線t,交l于點A,交圓M于點B,且|AO|=|OB|=2.
(1)求圓M和拋物線C的方程;
(2)設G,H是拋物線C上異于原點O的兩個不同點,且
OG
OH
=0
,求△GOH面積的最小值;
(3)在拋物線C上是否存在兩點P,Q關于直線m:y=k(x-1)(k≠0)對稱?若存在,求出直線m的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•揭陽二模)如圖已知拋物線C:y2=2px(p>0)的準線為l,焦點為F,圓M的圓心在x軸的正半軸上,且與y軸相切.過原點作傾斜角為
π3
的直線t,交l于點A,交圓M于點B,且|AO|=|OB|=2.
(1)求圓M和拋物線C的方程;
(2)試探究拋物線C上是否存在兩點P,Q關于直線m:y=k(x-1)(k≠0)對稱?若存在,求出直線m的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2011-2012年吉林省高二上學期第二次月考數學 題型:解答題

(本小題滿分14分)已知圓與y軸相切,圓心在直線: x-3y=0上,且在直線上截得的弦長為,求該圓的方程.

 

查看答案和解析>>

同步練習冊答案