|cosθ|=cosθ,|tanθ|=-tanθ,則在(    )

A.第二、四象限

B.第一、三象限

C.第一、三象限或終邊在x軸上

D.第四象限或終邊在x軸正半軸上

解析:∵|cosθ|=cosθ,∴cosθ≥0.

∴θ角終邊在一、四象限或在x軸正半軸上.

又|tanθ|=-tanθ,∴tanθ≤0.

∴θ角終邊在二、四象限或x軸上.

∴θ角終邊在第四象限或x軸正半軸上.

故選D.

答案:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在[-1,0]上單調(diào)遞減,又α,β為銳角三角形的兩內(nèi)角,則有( 。
A、f(sinα-sinβ)≥f(cosα-cosβ)B、f(sinα-cosβ)>f(cosα-sinβ)C、f(sinα-cosβ)≥f(cosα-sinβ)D、f(sinα-cosβ)<f(cosα-sinβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|cosα|=cos(2013π+α),則角α的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知奇函數(shù)f(x)在[-1,0]上單調(diào)遞減,又α,β為銳角三角形的兩內(nèi)角,則有(  )
A.f(sinα-sinβ)≥f(cosα-cosβ)
B.f(sinα-cosβ)>f(cosα-sinβ)
C.f(sinα-cosβ)≥f(cosα-sinβ)
D.f(sinα-cosβ)<f(cosα-sinβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省武漢二中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知奇函數(shù)f(x)在[-1,0]上單調(diào)遞減,又α,β為銳角三角形的兩內(nèi)角,則有( )
A.f(sinα-sinβ)≥f(cosα-cosβ)
B.f(sinα-cosβ)>f(cosα-sinβ)
C.f(sinα-cosβ)≥f(cosα-sinβ)
D.f(sinα-cosβ)<f(cosα-sinβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=cos(2x+)+sinx·cosx

⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問中,∵xÎ[0, ],∴2x-Î[-,],

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,

當(dāng)2x-, 即x=時(shí),f(x)max=1

第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構(gòu)造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,        ……………………8分

當(dāng)2x-, 即x=時(shí),f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

同步練習(xí)冊(cè)答案