(2012•鹽城三模)一個袋中裝有大小和質(zhì)地都相同的10個球,其中黑球4個,白球5個,紅球1個.
(1)從袋中任意摸出3個球,記得到白球的個數(shù)為X,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望E(X);
(2)每次從袋中隨機(jī)地摸出一球,記下顏色后放回.求3次摸球后,摸到黑球的次數(shù)大于摸到白球的次數(shù)的概率.
分析:(1)確定隨機(jī)變量X的取值,求出相應(yīng)的概率,即可得到隨機(jī)變量的分布列及數(shù)學(xué)期望;
(2)3次摸球后,摸到黑球的次數(shù)大于摸到白球,包括3個黑球,2個黑球1個白球或2個黑球1個紅球,由此可得結(jié)論.
解答:解:(1)隨機(jī)變量X的取值為0,1,2,3,則
P(X=0)=
C
3
5
C
3
10
=
1
12
;P(X=1)
C
1
5
C
2
5
C
3
10
=
5
12
;P(X=2)=
C
2
5
C
1
5
C
3
10
=
5
12
;P(X=3)=
C
3
5
C
3
10
=
1
12

X的分布列為
 X  0  1  2  3
 P  
1
12
 
5
12
 
5
12
 
1
12
∴EX=0×
1
12
+1×
5
12
+2×
5
12
+3×
1
12
=
3
2
;
(2)記3次摸球后,摸到黑球的次數(shù)大于摸到白球的次數(shù)為事件A,則
P(A)=
C
3
3
×(
4
10
)3
+
C
2
3
×[(
4
10
)
2
×
5
10
+(
4
10
)2×
1
10
]
=
44
125
點(diǎn)評:本題考查概率的計算,考查離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,確定變量的取值,求出相應(yīng)的概率是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城三模)已知正△ABC的邊長為1,
CP
=7
CA
+3
CB
,則
CP
AB
=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城三模)在平面直角坐標(biāo)系xOy中,過點(diǎn)A(-2,-1)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F,短軸端點(diǎn)為B1、B2,
FB1
FB2
=2b2

(1)求a、b的值;
(2)過點(diǎn)A的直線l與橢圓C的另一交點(diǎn)為Q,與y軸的交點(diǎn)為R.過原點(diǎn)O且平行于l的直線與橢圓的一個交點(diǎn)為P.若AQ•AR=3OP2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城三模)選修4-1:幾何證明選講:
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點(diǎn)P,E為⊙O上一點(diǎn),
AE
=
AC
,DE交AB于點(diǎn)F.求證:PF•PO=PA•PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城三模)選修4-5:不等式選講:
解不等式:|x-1|>
2x

查看答案和解析>>

同步練習(xí)冊答案