【題目】已知橢圓 經(jīng)過點,一個焦點是

(1)求橢圓的方程;

(2)若傾斜角為的直線與橢圓交于兩點,且,求直線的方程.

【答案】(1) (2)

【解析】試題分析:(1)利用題目所提供的條件布列關(guān)于a,b的方程組,解方程組得橢圓方程.

(2)根據(jù)直線的傾斜角為設(shè)直線的方程為y=x+b聯(lián)立橢圓方程,利用韋達(dá)定理以及弦長公式解得b值,從而得直線的方程.

試題解析:

(1)橢圓C: (ab0)經(jīng)過點,

則:

橢圓的一個焦點是F(0,1).

a2﹣b2=1

由①②得:a2=4 b2=3

橢圓C的方程:

(2)根據(jù)題意可知:設(shè)直線l的方程為:y=x+b

聯(lián)立③④得:

3(x+b)2+4x2=12

整理得:7x2+6bx+3b2﹣12=0

∵|AB|===

解方程得:b=±2

直線l的方程為:y=x±2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為的棱形,且分別是的中點.

(1)證明:平面;

(2)若二面角的大小為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)為了解本校某年級女生的身高情況,從本校該年級的學(xué)生中隨機選出100名女生并統(tǒng)計她們的身高(單位: ),得到如圖頻率分布表:

分組(身高)

(Ⅰ)用分層抽樣的方法從身高在的女生中共抽取6人,則身高在的女生應(yīng)抽取幾人?

(Ⅱ)在(Ⅰ)中抽取的6人中,再隨機抽取2人,求這2人身高都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且tanC= . (Ⅰ)求角C大小;
(Ⅱ)當(dāng)c=1時,求ab的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,若將f(x)的圖象上所有點向右平移 個單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)增區(qū)間為(
A. ,k∈Z
B. ,k∈Z
C. ,k∈Z
D. ,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知點,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點;過點與直線平行的直線為, 與曲線相交于兩點.

(1)求曲線上的點到直線距離的最小值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的空間幾何體中,四邊形是邊長為2的正方形, 平面 , , .

(1)求證:平面平面;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,隔河看兩目標(biāo)A、B,但不能到達(dá),在岸邊選取相距 km的C、D兩點,并測得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面內(nèi)),求兩目標(biāo)A、B之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夾角為銳角,求x的取值范圍.
(3)若| |=2,求與 垂直的單位向量 的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案